These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 8399953)
1. Cell-seeding and in vitro biocompatibility evaluation of polymeric matrices of PEO/PBT copolymers and PLLA. Beumer GJ; van Blitterswijk CA; Bakker D; Ponec M Biomaterials; 1993 Jul; 14(8):598-604. PubMed ID: 8399953 [TBL] [Abstract][Full Text] [Related]
2. Bilayered biodegradable poly(ethylene glycol)/poly(butylene terephthalate) copolymer (Polyactive) as substrate for human fibroblasts and keratinocytes. van Dorp AG; Verhoeven MC; Koerten HK; van Blitterswijk CA; Ponec M J Biomed Mater Res; 1999 Dec; 47(3):292-300. PubMed ID: 10487879 [TBL] [Abstract][Full Text] [Related]
3. A new biodegradable matrix as part of a cell seeded skin substitute for the treatment of deep skin defects: a physico-chemical characterisation. Beumer GJ; van Blitterswijk CA; Bakker D; Ponec M Clin Mater; 1993; 14(1):21-7. PubMed ID: 10146446 [TBL] [Abstract][Full Text] [Related]
4. Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation. Beumer GJ; van Blitterswijk CA; Ponec M J Biomed Mater Res; 1994 May; 28(5):545-52. PubMed ID: 8027095 [TBL] [Abstract][Full Text] [Related]
5. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. El-Ghalbzouri A; Lamme EN; van Blitterswijk C; Koopman J; Ponec M Biomaterials; 2004 Jul; 25(15):2987-96. PubMed ID: 14967531 [TBL] [Abstract][Full Text] [Related]
6. Poly(L-lactide)-b-poly(ethylene oxide) copolymers with different arms: hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior. Liu Q; Cai C; Dong CM J Biomed Mater Res A; 2009 Mar; 88(4):990-9. PubMed ID: 18384173 [TBL] [Abstract][Full Text] [Related]
7. Small-diameter porous poly (epsilon-caprolactone) films enhance adhesion and growth of human cultured epidermal keratinocyte and dermal fibroblast cells. McMillan JR; Akiyama M; Tanaka M; Yamamoto S; Goto M; Abe R; Sawamura D; Shimomura M; Shimizu H Tissue Eng; 2007 Apr; 13(4):789-98. PubMed ID: 17228993 [TBL] [Abstract][Full Text] [Related]
8. Potential of a PLA-PEO-PLA-based scaffold for skin tissue engineering: in vitro evaluation. Garric X; Guillaume O; Dabboue H; Vert M; Molès JP J Biomater Sci Polym Ed; 2012; 23(13):1687-700. PubMed ID: 21888762 [TBL] [Abstract][Full Text] [Related]
9. Behaviors of keratinocytes and fibroblasts on films of PLA50-PEO-PLA50 triblock copolymers with various PLA segment lengths. Garric X; Garreau H; Vert M; Molès JP J Mater Sci Mater Med; 2008 Apr; 19(4):1645-51. PubMed ID: 17914633 [TBL] [Abstract][Full Text] [Related]
10. Adhesion and growth of rat aortic smooth muscle cells on lactide-based polymers. Bacáková L; Lapcíková M; Kubies D; Rypácek F Adv Exp Med Biol; 2003; 534():179-89. PubMed ID: 12903720 [TBL] [Abstract][Full Text] [Related]
11. Dermal regeneration in full-thickness wounds in Yucatan miniature pigs using a biodegradable copolymer. Van Dorp AG; Verhoeven MC; Koerten HK; Van Der Nat-Van Der Meij TH; Van Blitterswijk CA; Ponec M Wound Repair Regen; 1998; 6(6):556-68. PubMed ID: 9893175 [TBL] [Abstract][Full Text] [Related]
12. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Kempf M; Miyamura Y; Liu PY; Chen AC; Nakamura H; Shimizu H; Tabata Y; Kimble RM; McMillan JR Biomaterials; 2011 Jul; 32(21):4782-92. PubMed ID: 21477857 [TBL] [Abstract][Full Text] [Related]
13. Culture of subconfluent human fibroblasts and keratinocytes using biodegradable transfer membranes. Johnen C; Steffen I; Beichelt D; Bräutigam K; Witascheck T; Toman N; Moser V; Ottomann C; Hartmann B; Gerlach JC Burns; 2008 Aug; 34(5):655-63. PubMed ID: 18226463 [TBL] [Abstract][Full Text] [Related]
14. Interfacial behavior of PEO/PBT copolymers (Polyactive) in a calvarial system: an in vitro study. Radder AM; Davies JE; Leenders H; van Blitterswijk CA J Biomed Mater Res; 1994 Feb; 28(2):269-77. PubMed ID: 8207040 [TBL] [Abstract][Full Text] [Related]
15. [Development of new skin substitutes based on bioresorbable polymer for treatment of severe skin defects]. Garric X; Vert M; Molès JP Ann Pharm Fr; 2008; 66(5-6):313-8. PubMed ID: 19061732 [TBL] [Abstract][Full Text] [Related]
16. Use of bone-bonding hydrogel copolymers in bone: an in vitro and in vivo study of expanding PEO-PBT copolymers in goat femora. Sakkers RJ; Dalmeyer RA; de Wijn JR; van Blitterswijk CA J Biomed Mater Res; 2000 Mar; 49(3):312-8. PubMed ID: 10602063 [TBL] [Abstract][Full Text] [Related]
17. Degradative behaviour of polymeric matrices in (sub)dermal and muscle tissue of the rat: a quantitative study. Beumer GJ; van Blitterswijk CA; Ponec M Biomaterials; 1994 Jun; 15(7):551-9. PubMed ID: 7918908 [TBL] [Abstract][Full Text] [Related]
18. In vitro co-culture of human skin keratinocytes and fibroblasts on a biocompatible and biodegradable scaffold. Pajoum Shariati SR; Shokrgozar MA; Vossoughi M; Eslamifar A Iran Biomed J; 2009 Jul; 13(3):169-77. PubMed ID: 19688023 [TBL] [Abstract][Full Text] [Related]
19. In vitro and post-transplantation differentiation of human keratinocytes grown on the human type IV collagen film of a bilayered dermal substitute. Tinois E; Tiollier J; Gaucherand M; Dumas H; Tardy M; Thivolet J Exp Cell Res; 1991 Apr; 193(2):310-9. PubMed ID: 2004647 [TBL] [Abstract][Full Text] [Related]
20. Human skin cell cultures onto PLA50 (PDLLA) bioresorbable polymers: influence of chemical and morphological surface modifications. Garric X; Molès JP; Garreau H; Guilhou JJ; Vert M J Biomed Mater Res A; 2005 Feb; 72(2):180-9. PubMed ID: 15549782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]