BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8400014)

  • 1. [Polyurethane or silicone as long-term implant substance--a critical evaluation].
    Behrend D; Schmitz KP
    Biomed Tech (Berl); 1993; 38(7-8):172-8. PubMed ID: 8400014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue response to commercial silicone and polyurethane elastomers after different sterilization procedures.
    Zhang YZ; Bjursten LM; Freij-Larsson C; Kober M; Wesslén B
    Biomaterials; 1996 Dec; 17(23):2265-72. PubMed ID: 8968522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biostability and macrophage-mediated foreign body reaction of silicone-modified polyurethanes.
    Christenson EM; Dadsetan M; Hiltner A
    J Biomed Mater Res A; 2005 Aug; 74(2):141-55. PubMed ID: 16201029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histopathological reaction over prosthesis surface covered with silicone and polyurethane foam implanted in rats.
    Wagenführ-Júnior J; Ribas Filho JM; Nascimento MM; Ribas FM; Wanka MV; Godoi Ade L
    Acta Cir Bras; 2012 Dec; 27(12):866-73. PubMed ID: 23207753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of silicone/polyurethane graft polymers as a means of eliminating surface cracking of polyurethane prostheses.
    Pinchuk L; Martin JB; Esquivel MC; MacGregor DC
    J Biomater Appl; 1988 Oct; 3(2):260-96. PubMed ID: 3204496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural-Y Même polyurethane versus smooth silicone: analysis of the soft-tissue interaction from 3 days to 1 year in the rat animal model.
    Picha GJ; Goldstein JA; Stohr E
    Plast Reconstr Surg; 1990 Jun; 85(6):903-16. PubMed ID: 2190246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early tissue reaction to textured breast implant surfaces.
    Brohim RM; Foresman PA; Hildebrandt PK; Rodeheaver GT
    Ann Plast Surg; 1992 Apr; 28(4):354-62. PubMed ID: 1596069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular endothelial growth factor overexpression positively modulates the characteristics of periprosthetic tissue of polyurethane-coated silicone breast implant in rats.
    Vieira VJ; d'Acampora AJ; Marcos ABW; Di Giunta G; de Vasconcellos ZAA; Bins-Ely J; d'Eça Neves R; Figueiredo CP
    Plast Reconstr Surg; 2010 Dec; 126(6):1899-1910. PubMed ID: 21124130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implant effects on polyurethane and silicone cardiac pacing leads in humans: insulation measurements and SEM observations.
    Barbaro V; Bosi C; Caiazza S; Chistolini P; Ialongo D; Rosa P
    Biomaterials; 1985 Jan; 6(1):28-32. PubMed ID: 3971015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological response of the peritoneum and spleen to intraperitoneal biomaterials.
    Guo W; Willén R; Andersson R; Pärsson H; Liu X; Johansson K; Bengmark S
    Int J Artif Organs; 1993 May; 16(5):276-84. PubMed ID: 8354587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbofilm-covered prostheses in plastic surgery: preliminary observations.
    Bocchiotti G; Verna G; Fracalvieri M; Fanton E; Datta G; Robotti E
    Plast Reconstr Surg; 1993 Jan; 91(1):80-8; discussion 89-90. PubMed ID: 8380107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of surface-modifying macromolecules to enhance the biostability of segmented polyurethanes.
    Tang YW; Santerre JP; Labow RS; Taylor DG
    J Biomed Mater Res; 1997 Jun; 35(3):371-81. PubMed ID: 9138071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron and light microscopy examination of capsules around breast implants.
    Wagner H; Beller FK; Pfautsch M
    Plast Reconstr Surg; 1977 Jul; 60(1):49-55. PubMed ID: 327493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation.
    Lei ZY; Liu T; Li WJ; Shi XH; Fan DL
    Int J Nanomedicine; 2016; 11():5563-5572. PubMed ID: 27822035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Splenic response to silicon drain material following intraperitoneal implantation.
    Guo W; Willén R; Liu X; Odelius R; Carlén B
    J Biomed Mater Res; 1994 Dec; 28(12):1433-8. PubMed ID: 7876282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of polyurethane foam, revisited, in the rat model.
    Sinclair TM; Kerrigan CL; Sampalis J
    Plast Reconstr Surg; 1995 Nov; 96(6):1326-35. PubMed ID: 7480229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vivo method to evaluate the effect of materials upon arterial thrombosis.
    Van Kampen CL; Jones RD; Gibbons DF
    Biomater Med Devices Artif Organs; 1978; 6(1):37-56. PubMed ID: 656536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of oligomers content and surface morphology on foreign-body tumorigenesis with polyetherurethanes: two years subcutaneous implantation study in rats.
    Nakamura A; Kojima S; Isama K; Umemura T; Kawasaki Y; Takada K; Tsuda M; Kurokawa Y
    J Long Term Eff Med Implants; 1995; 5(4):263-73. PubMed ID: 10172704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyurethane elastomer biostability.
    Stokes K; McVenes R; Anderson JM
    J Biomater Appl; 1995 Apr; 9(4):321-54. PubMed ID: 9309503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.