These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8400572)

  • 1. Deterministic and stochastic models for the seasonal variability of measles transmission.
    Mollison D; Din SU
    Math Biosci; 1993; 117(1-2):155-77. PubMed ID: 8400572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonality and period-doubling bifurcations in an epidemic model.
    Aron JL; Schwartz IB
    J Theor Biol; 1984 Oct; 110(4):665-79. PubMed ID: 6521486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measles in England and Wales--I: An analysis of factors underlying seasonal patterns.
    Fine PE; Clarkson JA
    Int J Epidemiol; 1982 Mar; 11(1):5-14. PubMed ID: 7085179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
    Grenfell BT; Kleczkowski A; Gilligan CA; Bolker BM
    Stat Methods Med Res; 1995 Jun; 4(2):160-83. PubMed ID: 7582203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circannual rhythm of measles subsequent to immunisation.
    Douglas AS; Moffat MA
    Scott Med J; 1997 Jun; 42(3):68-72. PubMed ID: 9351118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaos and biological complexity in measles dynamics.
    Bolker BM; Grenfell BT
    Proc Biol Sci; 1993 Jan; 251(1330):75-81. PubMed ID: 8094567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disease extinction and community size: modeling the persistence of measles.
    Keeling MJ; Grenfell BT
    Science; 1997 Jan; 275(5296):65-7. PubMed ID: 8974392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical complexity in age-structured models of the transmission of the measles virus: epidemiological implications at high levels of vaccine uptake.
    Ferguson NM; Nokes DJ; Anderson RM
    Math Biosci; 1996 Dec; 138(2):101-30. PubMed ID: 8987355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns.
    Dalziel BD; Bjørnstad ON; van Panhuis WG; Burke DS; Metcalf CJ; Grenfell BT
    PLoS Comput Biol; 2016 Feb; 12(2):e1004655. PubMed ID: 26845437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of human mobility on the periodicities and mechanisms underlying measles dynamics.
    Marguta R; Parisi A
    J R Soc Interface; 2015 Mar; 12(104):20141317. PubMed ID: 25673302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the persistence of measles: reconciling theory, simulation and observation.
    Keeling MJ; Grenfell BT
    Proc Biol Sci; 2002 Feb; 269(1489):335-43. PubMed ID: 11886620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics.
    Becker AD; Birger RB; Teillant A; Gastanaduy PA; Wallace GS; Grenfell BT
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14595-14600. PubMed ID: 27872300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A link between the North Atlantic Oscillation and measles dynamics during the vaccination period in England and Wales.
    Lima M
    Ecol Lett; 2009 Apr; 12(4):302-14. PubMed ID: 19292792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreasing stochasticity through enhanced seasonality in measles epidemics.
    Mantilla-Beniers NB; Bjørnstad ON; Grenfell BT; Rohani P
    J R Soc Interface; 2010 May; 7(46):727-39. PubMed ID: 19828508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First principles modeling of nonlinear incidence rates in seasonal epidemics.
    Ponciano JM; Capistrán MA
    PLoS Comput Biol; 2011 Feb; 7(2):e1001079. PubMed ID: 21379320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaos and complexity in measles models: a comparative numerical study.
    Bolker B
    IMA J Math Appl Med Biol; 1993; 10(2):83-95. PubMed ID: 8370994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics.
    Olsen LF; Schaffer WM
    Science; 1990 Aug; 249(4968):499-504. PubMed ID: 2382131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measles in England and Wales--III: Assessing published predictions of the impact of vaccination on incidence.
    Fine PE; Clarkson JA
    Int J Epidemiol; 1983 Sep; 12(3):332-9. PubMed ID: 6629622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic amplification in an epidemic model with seasonal forcing.
    Black AJ; McKane AJ
    J Theor Biol; 2010 Nov; 267(1):85-94. PubMed ID: 20723547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple attractors in the response to a vaccination program.
    Aron JL
    Theor Popul Biol; 1990 Aug; 38(1):58-67. PubMed ID: 2399511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.