BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 8401212)

  • 1. Conformational intermediates in the folding of a coiled-coil model peptide of the N-terminus of tropomyosin and alpha alpha-tropomyosin.
    Greenfield NJ; Hitchcock-DeGregori SE
    Protein Sci; 1993 Aug; 2(8):1263-73. PubMed ID: 8401212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of N-terminal acetylation on the structure of an N-terminal tropomyosin peptide and alpha alpha-tropomyosin.
    Greenfield NJ; Stafford WF; Hitchcock-DeGregori SE
    Protein Sci; 1994 Mar; 3(3):402-10. PubMed ID: 8019411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein.
    Greenfield NJ; Huang YJ; Palm T; Swapna GV; Monleon D; Montelione GT; Hitchcock-DeGregori SE
    J Mol Biol; 2001 Sep; 312(4):833-47. PubMed ID: 11575936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-helix to random-coil transitions of two-chain coiled coils: the use of physical models in treating thermal denaturation equilibria of isolated subsequences of alpha alpha-tropomyosin.
    Holtzer A; Holtzer ME
    Biopolymers; 1990; 30(13-14):1231-41. PubMed ID: 2085659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of spectral decomposition via the convex constraint algorithm in interpreting the CD-observed unfolding transitions of coiled coils.
    Holtzer ME; Holtzer A
    Biopolymers; 1995 Sep; 36(3):365-79. PubMed ID: 7669920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of the N-terminus of striated muscle alpha-tropomyosin in a chimeric peptide: nuclear magnetic resonance structure and circular dichroism studies.
    Greenfield NJ; Montelione GT; Farid RS; Hitchcock-DeGregori SE
    Biochemistry; 1998 May; 37(21):7834-43. PubMed ID: 9601044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unfolding domains of recombinant fusion alpha alpha-tropomyosin.
    Ishii Y; Hitchcock-DeGregori S; Mabuchi K; Lehrer SS
    Protein Sci; 1992 Oct; 1(10):1319-25. PubMed ID: 1303750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD and (13)C(alpha)-NMR studies of folding equilibria in a two-stranded coiled coil formed by residues 190-254 of alpha-tropomyosin.
    Emerson Holtzer M; Mints L; Hogue Angeletti R; d'Avignon DA; Holtzer A
    Biopolymers; 2001 Oct; 59(4):257-65. PubMed ID: 11473350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of folding and unfolding of alpha alpha-tropomyosin and of nonpolymerizable alpha alpha-tropomyosin.
    Mo J; Holtzer ME; Holtzer A
    Biopolymers; 1991 Oct; 31(12):1417-27. PubMed ID: 1816878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils.
    Zhou NE; Kay CM; Hodges RS
    J Mol Biol; 1994 Apr; 237(4):500-12. PubMed ID: 8151708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural stability of short subsequences of the tropomyosin chain.
    Holtzer ME; Crimmins DL; Holtzer A
    Biopolymers; 1995 Jan; 35(1):125-36. PubMed ID: 7696553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of an intramolecular antiparallel coiled coil peptide.
    Myszka DG; Chaiken IM
    Biochemistry; 1994 Mar; 33(9):2363-72. PubMed ID: 8117695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin.
    Greenfield NJ; Fowler VM
    Biophys J; 2002 May; 82(5):2580-91. PubMed ID: 11964245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stability of tropomyosin, a two-stranded coiled-coil protein, is primarily a function of the hydrophobicity of residues at the helix-helix interface.
    Greenfield NJ; Hitchcock-DeGregori SE
    Biochemistry; 1995 Dec; 34(51):16797-805. PubMed ID: 8527455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha-helix to random coil transitions of two-chain coiled coils: experiments on the thermal denaturation of isolated segments of alpha alpha-tropomyosin.
    Holtzer ME; Holtzer A
    Biopolymers; 1990; 30(9-10):985-93. PubMed ID: 2092827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A calorimetric study of the folding-unfolding of an alpha-helix with covalently closed N and C-terminal loops.
    Taylor JW; Greenfield NJ; Wu B; Privalov PL
    J Mol Biol; 1999 Aug; 291(4):965-76. PubMed ID: 10452900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-helix to random coil transitions: determination of peptide concentration from the CD at the isodichroic point.
    Holtzer ME; Holtzer A
    Biopolymers; 1992 Dec; 32(12):1675-7. PubMed ID: 1472650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic model for two-stranded alpha-helical coiled-coils. Design, synthesis, and characterization of an 86-residue analog of tropomyosin.
    Hodges RS; Saund AK; Chong PC; St-Pierre SA; Reid RE
    J Biol Chem; 1981 Feb; 256(3):1214-24. PubMed ID: 7451500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the minimum size of a hydrophobic cluster in two-stranded alpha-helical coiled-coils: effects on protein stability.
    Lu SM; Hodges RS
    Protein Sci; 2004 Mar; 13(3):714-26. PubMed ID: 14978309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.