These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 8401234)
1. Modeling of protein loops by simulated annealing. Collura V; Higo J; Garnier J Protein Sci; 1993 Sep; 2(9):1502-10. PubMed ID: 8401234 [TBL] [Abstract][Full Text] [Related]
2. Development of an extended simulated annealing method: application to the modeling of complementary determining regions of immunoglobulins. Higo J; Collura V; Garnier J Biopolymers; 1992 Jan; 32(1):33-43. PubMed ID: 1617148 [TBL] [Abstract][Full Text] [Related]
3. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles. Möglich A; Weinfurtner D; Maurer T; Gronwald W; Kalbitzer HR BMC Bioinformatics; 2005 Apr; 6():91. PubMed ID: 15819976 [TBL] [Abstract][Full Text] [Related]
4. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin. Mehler EL; Hassan SA; Kortagere S; Weinstein H Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264 [TBL] [Abstract][Full Text] [Related]
5. A method for rapidly assessing and refining simple solvent treatments in molecular modelling. Example studies on the antigen-combining loop H2 from FAB fragment McPC603. Collura VP; Greaney PJ; Robson B Protein Eng; 1994 Feb; 7(2):221-33. PubMed ID: 8170926 [TBL] [Abstract][Full Text] [Related]
6. Modeling protein loops using a phi i + 1, psi i dimer database. Sudarsanam S; DuBose RF; March CJ; Srinivasan S Protein Sci; 1995 Jul; 4(7):1412-20. PubMed ID: 7670382 [TBL] [Abstract][Full Text] [Related]
7. Prediction of a 12-residue loop in bovine pancreatic trypsin inhibitor: effects of buried water. Carlacci L Biopolymers; 2001 Apr; 58(4):359-73. PubMed ID: 11180050 [TBL] [Abstract][Full Text] [Related]
8. Beta-sheet folding of fragment (16-36) of bovine pancreatic trypsin inhibitor as predicted by Monte Carlo simulated annealing. Nakazawa T; Kawai H; Okamoto Y; Fukugita M Protein Eng; 1992 Sep; 5(6):495-503. PubMed ID: 1279665 [TBL] [Abstract][Full Text] [Related]
9. Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN: application in predicting the three-dimensional structure of murine homeodomain Msx-1. Li H; Tejero R; Monleon D; Bassolino-Klimas D; Abate-Shen C; Bruccoleri RE; Montelione GT Protein Sci; 1997 May; 6(5):956-70. PubMed ID: 9144767 [TBL] [Abstract][Full Text] [Related]
10. Solution structure and backbone dynamics of recombinant Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy. Liu J; Prakash O; Cai M; Gong Y; Huang Y; Wen L; Wen JJ; Huang JK; Krishnamoorthi R Biochemistry; 1996 Feb; 35(5):1516-24. PubMed ID: 8634282 [TBL] [Abstract][Full Text] [Related]
11. Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions. Olson MA; Feig M; Brooks CL J Comput Chem; 2008 Apr; 29(5):820-31. PubMed ID: 17876760 [TBL] [Abstract][Full Text] [Related]
12. Solution structure of a sweet protein single-chain monellin determined by nuclear magnetic resonance and dynamical simulated annealing calculations. Lee SY; Lee JH; Chang HJ; Cho JM; Jung JW; Lee W Biochemistry; 1999 Feb; 38(8):2340-6. PubMed ID: 10029527 [TBL] [Abstract][Full Text] [Related]
13. PDB-based protein loop prediction: parameters for selection and methods for optimization. van Vlijmen HW; Karplus M J Mol Biol; 1997 Apr; 267(4):975-1001. PubMed ID: 9135125 [TBL] [Abstract][Full Text] [Related]
15. The loop problem in proteins: a Monte Carlo simulated annealing approach. Carlacci L; Englander SW Biopolymers; 1993 Aug; 33(8):1271-86. PubMed ID: 7689864 [TBL] [Abstract][Full Text] [Related]
16. Monte Carlo loop refinement and virtual screening of the thyroid-stimulating hormone receptor transmembrane domain. Ali MR; Latif R; Davies TF; Mezei M J Biomol Struct Dyn; 2015; 33(5):1140-52. PubMed ID: 25012978 [TBL] [Abstract][Full Text] [Related]
17. Calculation of protein backbone geometry from alpha-carbon coordinates based on peptide-group dipole alignment. Liwo A; Pincus MR; Wawak RJ; Rackovsky S; Scheraga HA Protein Sci; 1993 Oct; 2(10):1697-714. PubMed ID: 7504550 [TBL] [Abstract][Full Text] [Related]
18. Solution structure and dynamics of PEC-60, a protein of the Kazal type inhibitor family, determined by nuclear magnetic resonance spectroscopy. Liepinsh E; Berndt KD; Sillard R; Mutt V; Otting G J Mol Biol; 1994 May; 239(1):137-53. PubMed ID: 8196042 [TBL] [Abstract][Full Text] [Related]
19. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification. Wojcik J; Mornon JP; Chomilier J J Mol Biol; 1999 Jun; 289(5):1469-90. PubMed ID: 10373380 [TBL] [Abstract][Full Text] [Related]
20. Prediction of protein loop structures using a local move Monte Carlo approach and a grid-based force field. Cui M; Mezei M; Osman R Protein Eng Des Sel; 2008 Dec; 21(12):729-35. PubMed ID: 18957407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]