These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8401287)

  • 1. The biased lamellipodium development and microtubule organizing center position in vascular endothelial cells migrating under the influence of fluid flow.
    Masuda M; Fujiwara K
    Biol Cell; 1993; 77(3):237-45. PubMed ID: 8401287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological responses of single endothelial cells exposed to physiological levels of fluid shear stress.
    Masuda M; Fujiwara K
    Front Med Biol Eng; 1993; 5(2):79-87. PubMed ID: 8241033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow.
    Hu YL; Li S; Miao H; Tsou TC; del Pozo MA; Chien S
    J Vasc Res; 2002; 39(6):465-76. PubMed ID: 12566972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of shear stress upon localization of the Golgi apparatus and microtubule organizing center in isolated cultured endothelial cells.
    Coan DE; Wechezak AR; Viggers RF; Sauvage LR
    J Cell Sci; 1993 Apr; 104 ( Pt 4)():1145-53. PubMed ID: 8314899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress.
    Thoumine O; Nerem RM; Girard PR
    Lab Invest; 1995 Oct; 73(4):565-76. PubMed ID: 7474929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of orbital and laminar shear stress on endothelial cells.
    Dardik A; Chen L; Frattini J; Asada H; Aziz F; Kudo FA; Sumpio BE
    J Vasc Surg; 2005 May; 41(5):869-80. PubMed ID: 15886673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arterial shear stress regulates endothelial cell-directed migration, polarity, and morphology in confluent monolayers.
    Simmers MB; Pryor AW; Blackman BR
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1937-46. PubMed ID: 17586613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow.
    Sakamoto N; Saito N; Han X; Ohashi T; Sato M
    Biochem Biophys Res Commun; 2010 Apr; 395(2):264-9. PubMed ID: 20371223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady unidirectional laminar flow inhibits monolayer formation by human and rat microvascular endothelial cells.
    Rezvan A; Allen FD; Lelkes PI
    Endothelium; 2004; 11(1):11-6. PubMed ID: 15203875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradients in cytoplasmic calcium concentration ([Ca2+]i) in migrating human umbilical vein endothelial cells (HUVECs) stimulated by shear-stress.
    Yoshikawa N; Ariyoshi H; Aono Y; Sakon M; Kawasaki T; Monden M
    Life Sci; 1999; 65(24):2643-51. PubMed ID: 10619372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of shear strain in adherent vascular endothelial cells exposed to fluid shear stress.
    Ueki Y; Sakamoto N; Sato M
    Biochem Biophys Res Commun; 2010 Mar; 394(1):94-9. PubMed ID: 20175996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces.
    Vartanian KB; Kirkpatrick SJ; Hanson SR; Hinds MT
    Biochem Biophys Res Commun; 2008 Jul; 371(4):787-92. PubMed ID: 18471992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of laminar shear stress on the distribution of Weibel-Palade bodies in endothelial cells.
    Dragt BS; van Agtmaal EL; de Laat B; Voorberg J
    Thromb Res; 2012 Nov; 130(5):741-5. PubMed ID: 22964027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells.
    Li S; Butler P; Wang Y; Hu Y; Han DC; Usami S; Guan JL; Chien S
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3546-51. PubMed ID: 11891289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of endothelial cell migration under flow.
    Li S
    Methods Mol Biol; 2005; 294():107-21. PubMed ID: 15576909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton.
    Galbraith CG; Skalak R; Chien S
    Cell Motil Cytoskeleton; 1998; 40(4):317-30. PubMed ID: 9712262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients.
    Ostrowski MA; Huang EY; Surya VN; Poplawski C; Barakat JM; Lin GL; Fuller GG; Dunn AR
    Ann Biomed Eng; 2016 Jul; 44(7):2261-72. PubMed ID: 26589597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction.
    Moon JJ; Matsumoto M; Patel S; Lee L; Guan JL; Li S
    J Cell Physiol; 2005 Apr; 203(1):166-76. PubMed ID: 15389626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid shear stress combined with shear stress spatial gradients regulates vascular endothelial morphology.
    Yoshino D; Sakamoto N; Sato M
    Integr Biol (Camb); 2017 Jul; 9(7):584-594. PubMed ID: 28548171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces.
    Hsu S; Thakar R; Liepmann D; Li S
    Biochem Biophys Res Commun; 2005 Nov; 337(1):401-9. PubMed ID: 16188239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.