BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8401304)

  • 1. On the two pathways of the M-intermediate formation in the photocycle of bacteriorhodopsin.
    Drachev LA; Kaulen AD; Komrakov AYu
    Biochem Mol Biol Int; 1993 Jul; 30(3):461-9. PubMed ID: 8401304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrelations of M-intermediates in bacteriorhodopsin photocycle.
    Drachev LA; Kaulen AD; Komrakov AYu
    FEBS Lett; 1992 Nov; 313(3):248-50. PubMed ID: 1446744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative phenomena in the photocycle of D96N mutant bacteriorhodopsin.
    Radionov AN; Kaulen AD
    FEBS Lett; 1995 Dec; 377(3):330-2. PubMed ID: 8549749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreversal kinetics of the I1 and I2 intermediates in the photocycle of photoactive yellow protein by double flash experiments with variable time delay.
    Joshi CP; Borucki B; Otto H; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Jan; 44(2):656-65. PubMed ID: 15641791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of the M(N) (M(open)) intermediate in the wild-type bacteriorhodopsin photocycle is accompanied by an absorption spectrum shift to shorter wavelength, like that in the mutant D96N bacteriorhodopsin photocycle.
    Radionov AN; Klyachko VA; Kaulen AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1210-4. PubMed ID: 10561570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin.
    Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W
    Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton uptake and release are rate-limiting steps in the photocycle of the bacteriorhodopsin mutant E204Q.
    Misra S; Govindjee R; Ebrey TG; Chen N; Ma JX; Crouch RK
    Biochemistry; 1997 Apr; 36(16):4875-83. PubMed ID: 9125508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of intermediate N using mutant forms of bacteriorhodopsin at Asp-96].
    Danshina SV; Drachev LA; Kaulen AD; Korana KhG; Marti T; Mogi T; Skulachev VI
    Biokhimiia; 1992 Oct; 57(10):1574-85. PubMed ID: 1333821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein conformational changes in the bacteriorhodopsin photocycle.
    Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R
    J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes.
    Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D
    J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the heterogeneity of the M population in the photocycle of bacteriorhodopsin.
    Friedman N; Gat Y; Sheves M; Ottolenghi M
    Biochemistry; 1994 Dec; 33(49):14758-67. PubMed ID: 7993904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional difference map of the N intermediate in the bacteriorhodopsin photocycle: part of the F helix tilts in the M to N transition.
    Vonck J
    Biochemistry; 1996 May; 35(18):5870-8. PubMed ID: 8639548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH.
    Balashov SP; Lu M; Imasheva ES; Govindjee R; Ebrey TG; Othersen B; Chen Y; Crouch RK; Menick DR
    Biochemistry; 1999 Feb; 38(7):2026-39. PubMed ID: 10026285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular motion of bacteriorhodopsin mutant D96N in the purple membrane.
    Kikukawa T; Araiso T; Mukasa K; Shimozawa T; Kamo N
    FEBS Lett; 1995 Dec; 377(3):502-4. PubMed ID: 8549785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer.
    Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ
    Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin.
    Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS
    Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin.
    Otto H; Marti T; Holz M; Mogi T; Lindau M; Khorana HG; Heyn MP
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9228-32. PubMed ID: 2556706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved x-ray diffraction reveals multiple conformations in the M-N transition of the bacteriorhodopsin photocycle.
    Oka T; Yagi N; Fujisawa T; Kamikubo H; Tokunaga F; Kataoka M
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14278-82. PubMed ID: 11106390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins.
    Tóth-Boconádi R; Dér A; Keszthelyi L
    Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the first phase of the reprotonation switch of bacteriorhodopsin from time-resolved photovoltage and flash photolysis experiments on the photoreversal of the M-intermediate.
    Dickopf S; Heyn MP
    Biophys J; 1997 Dec; 73(6):3171-81. PubMed ID: 9414229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.