These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 8402888)
101. Overexpression of CLN1, CLN2, or ERG13 increases resistance to adriamycin in Saccharomyces cerevisiae. Takahashi T; Nakashima S; Masuda T; Yoneda S; Hwang GW; Naganuma A J Toxicol Sci; 2011; 36(6):855-7. PubMed ID: 22129752 [TBL] [Abstract][Full Text] [Related]
102. Some facts and thoughts on cell cycle control in yeast. Nasmyth K; Dirick L; Surana U; Amon A; Cvrckova F Cold Spring Harb Symp Quant Biol; 1991; 56():9-20. PubMed ID: 1840270 [No Abstract] [Full Text] [Related]
103. Involvement of S-adenosylmethionine in G1 cell-cycle regulation in Saccharomyces cerevisiae. Mizunuma M; Miyamura K; Hirata D; Yokoyama H; Miyakawa T Proc Natl Acad Sci U S A; 2004 Apr; 101(16):6086-91. PubMed ID: 15073333 [TBL] [Abstract][Full Text] [Related]
104. Cell cycle-dependent phosphorylation and dephosphorylation of the yeast DNA polymerase alpha-primase B subunit. Foiani M; Liberi G; Lucchini G; Plevani P Mol Cell Biol; 1995 Feb; 15(2):883-91. PubMed ID: 7823954 [TBL] [Abstract][Full Text] [Related]
107. Stochastic simulation for the inference of transcriptional control network of yeast cyclins genes. Vohradsky J Nucleic Acids Res; 2012 Aug; 40(15):7096-103. PubMed ID: 22589416 [TBL] [Abstract][Full Text] [Related]
108. Monitoring dynamics of gene expression in yeast during stationary phase. Paz I; Meunier JR; Choder M Gene; 1999 Aug; 236(1):33-42. PubMed ID: 10433964 [TBL] [Abstract][Full Text] [Related]
109. Whi5 hypo- and hyper-phosphorylation dynamics control cell cycle entry and progression. Xiao J; Turner JJ; Kõivomägi M; Skotheim JM bioRxiv; 2023 Nov; ():. PubMed ID: 37961465 [TBL] [Abstract][Full Text] [Related]
110. Spore germination in Saccharomyces cerevisiae: global gene expression patterns and cell cycle landmarks. Joseph-Strauss D; Zenvirth D; Simchen G; Barkai N Genome Biol; 2007; 8(11):R241. PubMed ID: 17999778 [TBL] [Abstract][Full Text] [Related]
111. Branching process deconvolution algorithm reveals a detailed cell-cycle transcription program. Guo X; Bernard A; Orlando DA; Haase SB; Hartemink AJ Proc Natl Acad Sci U S A; 2013 Mar; 110(10):E968-77. PubMed ID: 23388635 [TBL] [Abstract][Full Text] [Related]
112. Cell cycle. Cell-cycle control in a developmental context. Edgar BA Curr Biol; 1994 Jun; 4(6):522-4. PubMed ID: 7922372 [TBL] [Abstract][Full Text] [Related]
114. Checking cell size in yeast. Rupes I Trends Genet; 2002 Sep; 18(9):479-85. PubMed ID: 12175809 [TBL] [Abstract][Full Text] [Related]
115. Proline-directed protein phosphorylation and cell cycle regulation. Hall FL; Vulliet PR Curr Opin Cell Biol; 1991 Apr; 3(2):176-84. PubMed ID: 1831990 [TBL] [Abstract][Full Text] [Related]
116. Checkpoints in the cell cycle from a modeler's perspective. Tyson JJ; Novak B; Chen K; Val J Prog Cell Cycle Res; 1995; 1():1-8. PubMed ID: 9552349 [TBL] [Abstract][Full Text] [Related]
117. Fkh1 and Fkh2 associate with Sir2 to control CLB2 transcription under normal and oxidative stress conditions. Linke C; Klipp E; Lehrach H; Barberis M; Krobitsch S Front Physiol; 2013; 4():173. PubMed ID: 23874301 [TBL] [Abstract][Full Text] [Related]
118. Cell size control: new evidence for a general mechanism. Grebien F; Dolznig H; Beug H; Mullner EW Cell Cycle; 2005 Mar; 4(3):418-21. PubMed ID: 15703475 [TBL] [Abstract][Full Text] [Related]
119. One more reason to get arrested (in G1). Darzynkiewicz Z Cell Cycle; 2002; 1(5):318-9. PubMed ID: 12461292 [No Abstract] [Full Text] [Related]