These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123. CYANOBACTERIA LIKE BODIES (CLBs) AND DIARRHOEA. Joshi S; Rao M Med J Armed Forces India; 1994 Jul; 50(3):202. PubMed ID: 28790556 [No Abstract] [Full Text] [Related]
124. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Visintin R; Prinz S; Amon A Science; 1997 Oct; 278(5337):460-3. PubMed ID: 9334304 [TBL] [Abstract][Full Text] [Related]
125. Modeling the START transition in the budding yeast cell cycle. Ravi J; Samart K; Zwolak J PLoS Comput Biol; 2024 Aug; 20(8):e1012048. PubMed ID: 39093881 [TBL] [Abstract][Full Text] [Related]
126. Identifying vital nodes for yeast network by dynamic network entropy. Liu J; Wang Y; Men J; Wang H BMC Bioinformatics; 2024 Jul; 25(1):242. PubMed ID: 39026169 [TBL] [Abstract][Full Text] [Related]
127. Hyperactive Ras disrupts cell size control and a key step in cell cycle entry in budding yeast. DeWitt JT; Chinwuba JC; Kellogg DR Genetics; 2023 Oct; 225(2):. PubMed ID: 37531631 [TBL] [Abstract][Full Text] [Related]
128. A continuous-time stochastic Boolean model provides a quantitative description of the budding yeast cell cycle. Laomettachit T; Kraikivski P; Tyson JJ Sci Rep; 2022 Nov; 12(1):20302. PubMed ID: 36434030 [TBL] [Abstract][Full Text] [Related]
129. A yeast cell cycle model integrating stress, signaling, and physiology. Adler SO; Spiesser TW; Uschner F; Münzner U; Hahn J; Krantz M; Klipp E FEMS Yeast Res; 2022 Jun; 22(1):. PubMed ID: 35617157 [TBL] [Abstract][Full Text] [Related]
131. Cyclin/Forkhead-mediated coordination of cyclin waves: an autonomous oscillator rationalizing the quantitative model of Cdk control for budding yeast. Barberis M NPJ Syst Biol Appl; 2021 Dec; 7(1):48. PubMed ID: 34903735 [TBL] [Abstract][Full Text] [Related]
132. Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription. Asfaha JB; Örd M; Carlson CR; Faustova I; Loog M; Morgan DO Curr Biol; 2022 Jan; 32(1):256-263.e4. PubMed ID: 34818519 [TBL] [Abstract][Full Text] [Related]
133. Quantitative model of eukaryotic Cdk control through the Forkhead CONTROLLER. Barberis M NPJ Syst Biol Appl; 2021 Jun; 7(1):28. PubMed ID: 34117265 [TBL] [Abstract][Full Text] [Related]
135. Recombination and Pol ζ Rescue Defective DNA Replication upon Impaired CMG Helicase-Pol ε Interaction. Denkiewicz-Kruk M; Jedrychowska M; Endo S; Araki H; Jonczyk P; Dmowski M; Fijalkowska IJ Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322195 [TBL] [Abstract][Full Text] [Related]
136. Clb3-centered regulations are recurrent across distinct parameter regions in minimal autonomous cell cycle oscillator designs. Mondeel TDGA; Ivanov O; Westerhoff HV; Liebermeister W; Barberis M NPJ Syst Biol Appl; 2020 Apr; 6(1):8. PubMed ID: 32245958 [TBL] [Abstract][Full Text] [Related]
137. Protein Phosphatases in G1 Regulation. Martín R; Stonyte V; Lopez-Aviles S Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936296 [TBL] [Abstract][Full Text] [Related]
138. A transcriptome-wide analysis deciphers distinct roles of G1 cyclins in temporal organization of the yeast cell cycle. Teufel L; Tummler K; Flöttmann M; Herrmann A; Barkai N; Klipp E Sci Rep; 2019 Mar; 9(1):3343. PubMed ID: 30833602 [TBL] [Abstract][Full Text] [Related]
139. The cell-cycle transcriptional network generates and transmits a pulse of transcription once each cell cycle. Cho CY; Kelliher CM; Haase SB Cell Cycle; 2019 Feb; 18(4):363-378. PubMed ID: 30668223 [TBL] [Abstract][Full Text] [Related]
140. Selective defects in gene expression control genome instability in yeast splicing mutants. Tam AS; Sihota TS; Milbury KL; Zhang A; Mathew V; Stirling PC Mol Biol Cell; 2019 Jan; 30(2):191-200. PubMed ID: 30462576 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]