BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8403381)

  • 1. Transient expression of calbindin-D28k immunoreactivity in layer V pyramidal neurons during postnatal development of kitten cortical areas.
    Hogan D; Berman NE
    Brain Res Dev Brain Res; 1993 Aug; 74(2):177-92. PubMed ID: 8403381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of parvalbumin and calbindin-D28k immunoreactive interneurons in kitten visual cortical areas.
    Hogan D; Berman NE
    Brain Res Dev Brain Res; 1994 Jan; 77(1):1-21. PubMed ID: 8131257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development of calbindin-D28k immunoreactivity in the cerebral cortex of the cat.
    Alcantara S; Ferrer I
    Anat Embryol (Berl); 1995 Oct; 192(4):369-84. PubMed ID: 8554170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat.
    Alcántara S; Ferrer I; Soriano E
    Anat Embryol (Berl); 1993 Jul; 188(1):63-73. PubMed ID: 8214625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat.
    van Brederode JF; Helliesen MK; Hendrickson AE
    Neuroscience; 1991; 44(1):157-71. PubMed ID: 1770994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal development of parvalbumin and calbindin D-28k immunoreactivities in the canine anterior cingulate cortex: transient expression in layer V pyramidal cells.
    Moon JS; Kim JJ; Chang IY; Chung YY; Jun JY; You HJ; Yoon SP
    Int J Dev Neurosci; 2002 Oct; 20(6):511. PubMed ID: 12392755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient colocalization of parvalbumin and calbindin D28k in the postnatal cerebral cortex: evidence for a phenotypic shift in developing nonpyramidal neurons.
    Alcantara S; de Lecea L; Del Rio JA; Ferrer I; Soriano E
    Eur J Neurosci; 1996 Jul; 8(7):1329-39. PubMed ID: 8758940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of calbindin-D28k and parvalbumin during development of rat's basolateral amygdaloid complex.
    Berdel B; Moryś J
    Int J Dev Neurosci; 2000 Oct; 18(6):501-13. PubMed ID: 10884595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calbindin-D28K-immunoreactive cells and fibres in the human amygdaloid complex.
    Sorvari H; Soininen H; Pitkänen A
    Neuroscience; 1996 Nov; 75(2):421-43. PubMed ID: 8931007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and morphological characterization of phosphate-activated glutaminase-immunoreactive neurons in cat visual cortex.
    Van der Gucht E; Jacobs S; Kaneko T; Vandesande F; Arckens L
    Brain Res; 2003 Oct; 988(1-2):29-42. PubMed ID: 14519524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurochemical gradients along monkey sensory cortical pathways: calbindin-immunoreactive pyramidal neurons in layers II and III.
    Kondo H; Tanaka K; Hashikawa T; Jones EG
    Eur J Neurosci; 1999 Dec; 11(12):4197-203. PubMed ID: 10594645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient co-localization of calretinin, parvalbumin, and calbindin-D28K in developing visual cortex of monkey.
    Yan YH; Van Brederode JF; Hendrickson AE
    J Neurocytol; 1995 Nov; 24(11):825-37. PubMed ID: 8576712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonphosphorylated neurofilament protein and calbindin immunoreactivity in layer III pyramidal neurons of human neocortex.
    Hayes TL; Lewis DA
    Cereb Cortex; 1992; 2(1):56-67. PubMed ID: 1633408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution and morphology of calbindin D28K- and calretinin-immunoreactive neurons in the visual cortex of mouse.
    Park HJ; Kong JH; Kang YS; Park WM; Jeong SA; Park SM; Lim JK; Jeon CJ
    Mol Cells; 2002 Aug; 14(1):143-9. PubMed ID: 12243344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient calbindin-D28k-positive systems in the telencephalon: ganglionic eminence, developing striatum and cerebral cortex.
    Liu FC; Graybiel AM
    J Neurosci; 1992 Feb; 12(2):674-90. PubMed ID: 1740695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurochemical compartmentation of monkey and human visual cortex: similarities and variations in calbindin immunoreactivity across species.
    Hendry SH; Carder RK
    Vis Neurosci; 1993; 10(6):1109-20. PubMed ID: 8257667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of calbindin- and parvalbumin-containing neurons.
    Gao WJ; Wormington AB; Newman DE; Pallas SL
    J Comp Neurol; 2000 Jun; 422(1):140-57. PubMed ID: 10842223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Q- and L-type calcium channels control the development of calbindin phenotype in hippocampal pyramidal neurons in vitro.
    Boukhaddaoui H; Sieso V; Scamps F; Vigues S; Roig A; Valmier J
    Eur J Neurosci; 2000 Jun; 12(6):2068-78. PubMed ID: 10886346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurofilament and calcium-binding proteins in the human cingulate cortex.
    Nimchinsky EA; Vogt BA; Morrison JH; Hof PR
    J Comp Neurol; 1997 Aug; 384(4):597-620. PubMed ID: 9259492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of enhanced postnatal expression of immunoreactive calbindin-D28k in rat forebrain by the calcium antagonist nimodipine.
    Luiten PG; Buwalda B; Traber J; Nyakas C
    Brain Res Dev Brain Res; 1994 May; 79(1):10-8. PubMed ID: 8070053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.