These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 840371)

  • 21. Primary structure of bovine adrenal phenylethanolamine N-methyltransferase.
    Wong DL; Yoo YS; Lau K; Schilling JW
    Neuropsychopharmacology; 1990 Jun; 3(3):175-80. PubMed ID: 2363805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adrenocortical control of the biosynthesis of epinephrine and proteins in the adrenal medulla.
    Wurtman RJ; Pohorecky LA; Baliga BS
    Pharmacol Rev; 1972 Jun; 24(2):411-26. PubMed ID: 4117970
    [No Abstract]   [Full Text] [Related]  

  • 23. SNAP-25 is differentially expressed by noradrenergic and adrenergic chromaffin cells.
    Kannan R; Grant NJ; Aunis D; Langley K
    FEBS Lett; 1996 May; 385(3):159-64. PubMed ID: 8647242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determinants of phenylethanolamine-N-methyltransferase expression.
    Evinger MJ
    Adv Pharmacol; 1998; 42():73-6. PubMed ID: 9327850
    [No Abstract]   [Full Text] [Related]  

  • 25. Catecholamine-synthesizing enzymes and chromogranin proteins in drug-induced proliferative lesions of the rat adrenal medulla.
    Tischler AS; Ruzicka LA; Van Pelt CS; Sandusky GE
    Lab Invest; 1990 Jul; 63(1):44-51. PubMed ID: 1695697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subcellular site of biosynthesis of the catecholamine biosynthetic enzymes in bovine adrenal medulla.
    Sabban EL; Goldstein M
    J Neurochem; 1984 Dec; 43(6):1663-8. PubMed ID: 6149268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of sodium chloride on phenylethanolamine N-methyltransferase activity.
    Cubeddu X L; Vargas AM
    Mol Pharmacol; 1977 Jan; 13(1):172-80. PubMed ID: 13293
    [No Abstract]   [Full Text] [Related]  

  • 28. Triple immunohistochemical staining for bromodeoxyuridine and catecholamine biosynthetic enzymes using microwave antigen retrieval.
    Tischler AS
    J Histochem Cytochem; 1995 Jan; 43(1):1-4. PubMed ID: 7822757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of phenylethanolamine N-methyl transferase.
    Fuller RW; Roush BW; Molloy BB
    Adv Enzyme Regul; 1974; 12():311-41. PubMed ID: 4462384
    [No Abstract]   [Full Text] [Related]  

  • 30. Genetically controlled alterations in the rate of degradation of phenylethanolamine N-methyltransferase.
    Ciaranello RD; Axelrod J
    J Biol Chem; 1973 Aug; 248(16):5616-23. PubMed ID: 4723903
    [No Abstract]   [Full Text] [Related]  

  • 31. Characterization of the isozymes of bovine adrenal medullary phenylethanolamine N-methyltransferase.
    Wong DL; Yamasaki L; Ciaranello RD
    Brain Res; 1987 Apr; 410(1):32-44. PubMed ID: 3580898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ontogeny of enkephalin and catecholamine-synthesizing enzymes in the primate fetal adrenal medulla.
    Wilburn LA; Goldsmith PC; Chang KJ; Jaffe RB
    J Clin Endocrinol Metab; 1986 Oct; 63(4):974-80. PubMed ID: 2427537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catecholamine binding by adrenal medullary protein can interfere with a sensitive radioenzymatic assay for norepinephrine.
    Studelska DR; Campbell NR; Brimijoin WS
    Life Sci; 1985 Mar; 36(9):881-7. PubMed ID: 3974415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ontogeny of catecholamine-synthesizing enzymes and enkephalins in the sheep adrenal medulla: an immunocytochemical study.
    McMillen IC; Mulvogue HM; Coulter CL; Browne CA; Howe PR
    J Endocrinol; 1988 Aug; 118(2):221-6. PubMed ID: 3171466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunohistochemical and biochemical study on the development of the noradrenaline- and adrenaline-storing cells of the adrenal medulla of the rat.
    Verhofstad AA; Coupland RE; Parker TR; Goldstein M
    Cell Tissue Res; 1985; 242(2):233-43. PubMed ID: 3902244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of phenylethanolamine N-methyltransferase by glucocorticoids in cultured bovine adrenal medullary cells.
    Hersey RM; DiStefano V
    J Pharmacol Exp Ther; 1979 Apr; 209(1):147-52. PubMed ID: 219180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different roles for the pituitary and adrenal cortex in the control of enkephalin peptide localization and cortico-medullary interaction in the sheep adrenal during development.
    Coulter CL; Young IR; Browne CA; McMillen IC
    Neuroendocrinology; 1991 Mar; 53(3):281-6. PubMed ID: 1645853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adrenomedullin receptor is found exclusively in noradrenaline-secreting cells of the rat adrenal medulla.
    Renshaw D; Thomson LM; Michael GJ; Carroll M; Kapas S; Hinson JP
    J Neurochem; 2000 Apr; 74(4):1766-72. PubMed ID: 10737636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adrenergic innervation of the rat nucleus locus coeruleus arises predominantly from the C1 adrenergic cell group in the rostral medulla.
    Pieribone VA; Aston-Jones G
    Neuroscience; 1991; 41(2-3):525-42. PubMed ID: 1714551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The long term effects of an inhibitor of phenylethanolamine N-methyltransferase upon adrenal epinephrine biosynthesis.
    Pendleton RG; Gessner G; Jenkins B
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Nov; 295(2):127-33. PubMed ID: 825786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.