These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 8403846)
1. Prostaglandin-like activity, fatty acid and phospholipid composition of sika deer (Cervus nippon) antlers at different growth stages. Ivankina NF; Isay SV; Busarova NG; Mischenko TYa Comp Biochem Physiol B; 1993 Sep; 106(1):159-62. PubMed ID: 8403846 [TBL] [Abstract][Full Text] [Related]
2. Compositional analysis of the glycosaminoglycan family in velvet antlers of Sika deer (Cervus nippon) at different growing stages. Takeda-Okuda N; Mizumoto S; Zhang Z; Kim SK; Lee CH; Jeon BT; Hosaka YZ; Kadomatsu K; Yamada S; Tamura JI Glycoconj J; 2019 Apr; 36(2):127-139. PubMed ID: 30680582 [TBL] [Abstract][Full Text] [Related]
3. CONTROLLING ANTLER GROWTH IN A CASTRATED INDOCHINESE SIKA DEER CERVUS NIPPON PSEUDAXIS USING A COMMERCIALLY AVAILABLE TRENBOLONE ACETATE AND ESTRADIOL IMPLANT. Raines JA; Storms T J Zoo Wildl Med; 2015 Dec; 46(4):967-70. PubMed ID: 26667563 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characterization of peptidoglycan recognition protein 1 from antler base of sika deer (Cervus nippon). Jiang W; Yin Y; Zhou Y; He G; Qi Y Int J Biol Macromol; 2014 Mar; 64():313-8. PubMed ID: 24360898 [TBL] [Abstract][Full Text] [Related]
5. Antler transformation is advanced by inversion of antlerogenic periosteum implants in sika deer (Cervus nippon). Gao X; Yang F; Zhao H; Wang W; Li C Anat Rec (Hoboken); 2010 Oct; 293(10):1787-96. PubMed ID: 20730865 [TBL] [Abstract][Full Text] [Related]
6. A consensus genome of sika deer (Cervus nippon) and transcriptome analysis provided novel insights on the regulation mechanism of transcript factor in antler development. Wang Q; Han R; Xing H; Li H BMC Genomics; 2024 Jun; 25(1):617. PubMed ID: 38890595 [TBL] [Abstract][Full Text] [Related]
7. Does chemical composition of antler bone reflect the physiological effort made to grow it? Landete-Castillejos T; Estevez JA; MartÃnez A; Ceacero F; Garcia A; Gallego L Bone; 2007 Apr; 40(4):1095-102. PubMed ID: 17239669 [TBL] [Abstract][Full Text] [Related]
8. Screening weight related genes of velvet antlers by whole genome re-sequencing. Hu PF; Xu JP; Ai C; Shao XJ; Wang HL; Dong YM; Cui XZ; Fuhe Y; Xiumei X Yi Chuan; 2017 Nov; 39(11):1090-1101. PubMed ID: 29254926 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic analysis of different tissue layers in antler growth Center in Sika Deer (Cervus nippon). Ba H; Wang D; Yau TO; Shang Y; Li C BMC Genomics; 2019 Mar; 20(1):173. PubMed ID: 30836939 [TBL] [Abstract][Full Text] [Related]
10. [Comparative study on the protein maps of different parts of Cervus nippon antler by two-dimensional electrophoresis]. Ding QN; Wang CM; Dai JD; Dong L Zhong Yao Cai; 2013 Apr; 36(4):521-5. PubMed ID: 24133991 [TBL] [Abstract][Full Text] [Related]
11. Mapping the morphogenetic potential of antler fields through deleting and transplanting subregions of antlerogenic periosteum in sika deer (Cervus nippon). Gao Z; Yang F; McMahon C; Li C J Anat; 2012 Feb; 220(2):131-43. PubMed ID: 22122063 [TBL] [Abstract][Full Text] [Related]
12. Bone turnover associated with antler growth in red deer (Cervus elaphus). Baxter BJ; Andrews RN; Barrell GK Anat Rec; 1999 Sep; 256(1):14-9. PubMed ID: 10456981 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of differentially expressed genes in Sika deer antler at different stages. Zhao Y; Yao B; Zhang M; Wang S; Zhang H; Xiao W Mol Biol Rep; 2013 Feb; 40(2):1665-76. PubMed ID: 23073784 [TBL] [Abstract][Full Text] [Related]
14. Body weight, early growth and antler size influence antler bone mineral composition of Iberian red deer (Cervus elaphus hispanicus). Landete-Castillejos T; Garcia A; Gallego L Bone; 2007 Jan; 40(1):230-5. PubMed ID: 16949898 [TBL] [Abstract][Full Text] [Related]
15. Testosterone, but not IGF-1, LH, prolactin or cortisol, may serve as antler-stimulating hormone in red deer stags (Cervus elaphus). Bartos L; Schams D; Bubenik GA Bone; 2009 Apr; 44(4):691-8. PubMed ID: 19124089 [TBL] [Abstract][Full Text] [Related]
16. Studies of the chemical structure of gangliosides in deer antler, Cervus nippon. Jhon GJ; Park SY; Han SY; Lee S; Kim Y; Chang YS Chem Pharm Bull (Tokyo); 1999 Jan; 47(1):123-7. PubMed ID: 9987834 [TBL] [Abstract][Full Text] [Related]
17. The influence of lipid compounds on the content of fluorides in antlers and cranial bones of roe deer (Capreolus capreolus L.). Sobota S Ann Acad Med Stetin; 2012; 58(1):71-7. PubMed ID: 23547399 [TBL] [Abstract][Full Text] [Related]
18. [A comparison of chemical composition and bioactivity of polypeptides from velvet antlers of Cervus nippon Temminck and Cervus elaphus Linnaeus]. Zhou QL; Liu YQ; Wang Y; Guo YJ; Wang BX Zhongguo Zhong Yao Za Zhi; 2001 Oct; 26(10):699-702. PubMed ID: 12776321 [TBL] [Abstract][Full Text] [Related]
19. Molecular cloning, recombinant expression, and purification of osteocalcin in sika deer (Cervus nippon) antler. Li X; Liu M; Bai X; Li Y; Zhao Y; Wang S; Wang J Pol J Vet Sci; 2019 Mar; 22(1):143-150. PubMed ID: 30997775 [TBL] [Abstract][Full Text] [Related]
20. Antler extracts stimulate chondrocyte proliferation and possess potent anti-oxidative, anti-inflammatory, and immune-modulatory properties. Yao B; Zhang M; Leng X; Liu M; Liu Y; Hu Y; Zhao D; Zhao Y In Vitro Cell Dev Biol Anim; 2018 Jun; 54(6):439-448. PubMed ID: 29850973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]