BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

26 related articles for article (PubMed ID: 8403847)

  • 1. Rapid Separation and Display of Active Fibrinogenolytic Agents in Sipunculus nudus through Fibrinogen-Polyacrylamide Gel Electrophoresis.
    Kang B; Hu C; Lin H; Yan H; Wei C; Tang M
    J Vis Exp; 2024 Apr; (206):. PubMed ID: 38709073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability in antivenom neutralization of Mexican viperid snake venoms.
    Guadarrama-Martínez A; Neri-Castro E; Boyer L; Alagón A
    PLoS Negl Trop Dis; 2024 May; 18(5):e0012152. PubMed ID: 38717980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticancer potency of Egyptian venom snakes on MCF-7 and HepG2 carcinoma cells.
    Abdallah S; Abdel-Halim KY; Alm-Eldeen A
    Environ Anal Health Toxicol; 2024 Mar; 39(1):e2024001-0. PubMed ID: 38631393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (Crotalus scutulatus).
    Strickland JL; Smith CF; Mason AJ; Schield DR; Borja M; Castañeda-Gaytán G; Spencer CL; Smith LL; Trápaga A; Bouzid NM; Campillo-García G; Flores-Villela OA; Antonio-Rangel D; Mackessy SP; Castoe TA; Rokyta DR; Parkinson CL
    Sci Rep; 2018 Dec; 8(1):17622. PubMed ID: 30514908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Snake Venom Extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity.
    Carregari VC; Rosa-Fernandes L; Baldasso P; Bydlowski SP; Marangoni S; Larsen MR; Palmisano G
    Sci Rep; 2018 Aug; 8(1):12067. PubMed ID: 30104604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Venom Ontogeny in the Mexican Lance-Headed Rattlesnake (
    Mackessy SP; Leroy J; Mociño-Deloya E; Setser K; Bryson RW; Saviola AJ
    Toxins (Basel); 2018 Jul; 10(7):. PubMed ID: 29970805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms.
    Rokyta DR; Margres MJ; Calvin K
    G3 (Bethesda); 2015 Sep; 5(11):2375-82. PubMed ID: 26358130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines.
    Bradshaw MJ; Saviola AJ; Fesler E; Mackessy SP
    Cytotechnology; 2016 Aug; 68(4):687-700. PubMed ID: 25407733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics.
    Rokyta DR; Wray KP; Margres MJ
    BMC Genomics; 2013 Jun; 14():394. PubMed ID: 23758969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transcriptomic view of the proteome variability of newborn and adult Bothrops jararaca snake venoms.
    Zelanis A; Andrade-Silva D; Rocha MM; Furtado MF; Serrano SM; Junqueira-de-Azevedo IL; Ho PL
    PLoS Negl Trop Dis; 2012; 6(3):e1554. PubMed ID: 22428077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. California ground squirrel (Spermophilus beecheyi) defenses against rattlesnake venom digestive and hemostatic toxins.
    Biardi JE; Chien DC; Coss RG
    J Chem Ecol; 2006 Jan; 32(1):137-54. PubMed ID: 16525875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. California ground squirrel (Spermophilus beecheyi) defenses against rattlesnake venom digestive and hemostatic toxins.
    Biardi JE; Chien DC; Coss RG
    J Chem Ecol; 2005 Nov; 31(11):2501-18. PubMed ID: 16273425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the major metalloprotease isolated from the venom of the northern pacific rattlesnake, Crotalus viridis oreganus.
    Mackessy SP
    Toxicon; 1996; 34(11-12):1277-85. PubMed ID: 9027983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers.
    Mackessy SP
    Toxicon; 2010 Jul; 55(8):1463-74. PubMed ID: 20227433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.
    Smith CF; Mackessy SP
    Toxicon; 2016 Sep; 120():110-23. PubMed ID: 27496060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemorrhagic, coagulant and fibrino(geno)lytic activities of crude venom and fractions from mapanare (Bothrops colombiensis) snakes.
    Girón ME; Salazar AM; Aguilar I; Pérez JC; Sánchez EE; Arocha-Piñango CL; Rodríguez-Acosta A; Guerrero B
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jan; 147(1):113-21. PubMed ID: 17933591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of multiple isoforms of alpha-fibrinogenase from the Western diamondback rattlesnake, Crotalus atrox: N-terminal sequence homology with ancrod, an antithrombotic agent from Malayan viper.
    Hung CC; Chiou SH
    Biochem Biophys Res Commun; 1994 Jun; 201(3):1414-23. PubMed ID: 8024586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrinogenolytic proteases from the venoms of juvenile and adult northern Pacific rattlesnakes (Crotalus viridis oreganus).
    Mackessy SP
    Comp Biochem Physiol B; 1993 Sep; 106(1):181-9. PubMed ID: 8403847
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.