These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 8404861)

  • 1. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.
    Gross DS; Adams CC; Lee S; Stentz B
    EMBO J; 1993 Oct; 12(10):3931-45. PubMed ID: 8404861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription.
    Erkine AM; Adams CC; Diken T; Gross DS
    Mol Cell Biol; 1996 Dec; 16(12):7004-17. PubMed ID: 8943356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements.
    Gross DS; English KE; Collins KW; Lee SW
    J Mol Biol; 1990 Dec; 216(3):611-31. PubMed ID: 2175361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter.
    Erkine AM; Adams CC; Gao M; Gross DS
    Nucleic Acids Res; 1995 May; 23(10):1822-9. PubMed ID: 7784189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.
    Erkine AM; Magrogan SF; Sekinger EA; Gross DS
    Mol Cell Biol; 1999 Mar; 19(3):1627-39. PubMed ID: 10022851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncoupling gene activity from chromatin structure: promoter mutations can inactivate transcription of the yeast HSP82 gene without eliminating nucleosome-free regions.
    Lee MS; Garrard WT
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9166-70. PubMed ID: 1409619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoter function and in situ protein/DNA interactions upstream of the yeast HSP90 heat shock genes.
    Gross DS; Adams CC; English KE; Collins KW; Lee S
    Antonie Van Leeuwenhoek; 1990 Oct; 58(3):175-86. PubMed ID: 2256678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic protein-DNA architecture of a yeast heat shock promoter.
    Giardina C; Lis JT
    Mol Cell Biol; 1995 May; 15(5):2737-44. PubMed ID: 7739554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock factor can activate transcription while bound to nucleosomal DNA in Saccharomyces cerevisiae.
    Pederson DS; Fidrych T
    Mol Cell Biol; 1994 Jan; 14(1):189-99. PubMed ID: 8264586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin.
    Sekinger EA; Gross DS
    EMBO J; 1999 Dec; 18(24):7041-55. PubMed ID: 10601026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cycle-dependent binding of yeast heat shock factor to nucleosomes.
    Venturi CB; Erkine AM; Gross DS
    Mol Cell Biol; 2000 Sep; 20(17):6435-48. PubMed ID: 10938121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that partial unwrapping of DNA from nucleosomes facilitates the binding of heat shock factor following DNA replication in yeast.
    Geraghty DS; Sucic HB; Chen J; Pederson DS
    J Biol Chem; 1998 Aug; 273(32):20463-72. PubMed ID: 9685401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element.
    Brandl CJ; Struhl K
    Mol Cell Biol; 1990 Aug; 10(8):4256-65. PubMed ID: 2196450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes.
    Erkina TY; Tschetter PA; Erkine AM
    Mol Cell Biol; 2008 Feb; 28(4):1207-17. PubMed ID: 18070923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The upstream sequences of the HSP82 and HSC82 genes of Saccharomyces cerevisiae: regulatory elements and nucleosome positioning motifs.
    Erkine AM; Szent-Gyorgyi C; Simmons SF; Gross DS
    Yeast; 1995 May; 11(6):573-80. PubMed ID: 7645348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast.
    Kastaniotis AJ; Mennella TA; Konrad C; Torres AM; Zitomer RS
    Mol Cell Biol; 2000 Oct; 20(19):7088-98. PubMed ID: 10982825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TATA-binding protein activates transcription when upstream of a GCN4-binding site in a novel yeast promoter.
    Brandl CJ; Martens JA; Liaw PC; Furlanetto AM; Wobbe CR
    J Biol Chem; 1992 Oct; 267(29):20943-52. PubMed ID: 1400410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A distal heat shock element promotes the rapid response to heat shock of the HSP26 gene in the yeast Saccharomyces cerevisiae.
    Chen J; Pederson DS
    J Biol Chem; 1993 Apr; 268(10):7442-8. PubMed ID: 8463277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.