BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8404867)

  • 1. Mammalian polypeptide chain release factor and tryptophanyl-tRNA synthetase are distinct proteins.
    Frolova LYu ; Dalphin ME; Justesen J; Powell RJ; Drugeon G; McCaughan KK; Kisselev LL; Tate WP; Haenni AL
    EMBO J; 1993 Oct; 12(10):4013-9. PubMed ID: 8404867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mammalian tryptophanyl-tRNA synthetase shows little homology to prokaryotic synthetases but near identity with mammalian peptide chain release factor.
    Garret M; Pajot B; Trézéguet V; Labouesse J; Merle M; Gandar JC; Benedetto JP; Sallafranque ML; Alterio J; Gueguen M
    Biochemistry; 1991 Aug; 30(31):7809-17. PubMed ID: 1907847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interferon inducibility of mammalian tryptophanyl-tRNA synthetase: new perspectives.
    Kisselev L; Frolova L; Haenni AL
    Trends Biochem Sci; 1993 Jul; 18(7):263-7. PubMed ID: 7692626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are the tryptophanyl-tRNA synthetase and the peptide-chain-release factor from higher eukaryotes one and the same protein?
    Frolova LYu ; Fleckner J; Justesen J; Timms KM; Tate WP; Kisselev LL; Haenni AL
    Eur J Biochem; 1993 Mar; 212(2):457-66. PubMed ID: 8444184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human interferon gamma potently induces the synthesis of a 55-kDa protein (gamma 2) highly homologous to rabbit peptide chain release factor and bovine tryptophanyl-tRNA synthetase.
    Fleckner J; Rasmussen HH; Justesen J
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11520-4. PubMed ID: 1763065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WRS-85D: A tryptophanyl-tRNA synthetase expressed to high levels in the developing Drosophila salivary gland.
    Seshaiah P; Andrew DJ
    Mol Biol Cell; 1999 May; 10(5):1595-608. PubMed ID: 10233165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and expression of a mammalian peptide chain release factor with sequence similarity to tryptophanyl-tRNA synthetases.
    Lee CC; Craigen WJ; Muzny DM; Harlow E; Caskey CT
    Proc Natl Acad Sci U S A; 1990 May; 87(9):3508-12. PubMed ID: 2185472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and nucleotide sequence of the structural gene encoding for human tryptophanyl-tRNA synthetase.
    Frolova LYu ; Sudomoina MA; Grigorieva AYu ; Zinovieva OL; Kisselev LL
    Gene; 1991 Dec; 109(2):291-6. PubMed ID: 1765274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The "eRF" clone corresponds to tryptophanyl-tRNA synthetase, not mammalian release factor.
    Timchenko L; Caskey CT
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2777-80. PubMed ID: 8146190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
    Sever S; Rogers K; Rogers MJ; Carter C; Söll D
    Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase.
    Jobin PG; Solis N; Machado Y; Bell PA; Kwon NH; Kim S; Overall CM; Butler GS
    J Biol Chem; 2019 Aug; 294(35):12866-12879. PubMed ID: 31324718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian tryptophanyl-tRNA synthetases.
    Kisselev LL
    Biochimie; 1993; 75(12):1027-39. PubMed ID: 7515282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An appended domain results in an unusual architecture for malaria parasite tryptophanyl-tRNA synthetase.
    Khan S; Garg A; Sharma A; Camacho N; Picchioni D; Saint-Léger A; Ribas de Pouplana L; Yogavel M; Sharma A
    PLoS One; 2013; 8(6):e66224. PubMed ID: 23776638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and expression of the Saccharomyces cerevisiae cytoplasmic tryptophanyl-tRNA synthetase gene.
    John TR; Ghosh M; Johnson JD
    Yeast; 1997 Jan; 13(1):37-41. PubMed ID: 9046085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications.
    Jin M
    Exp Mol Med; 2019 Jan; 51(1):1-10. PubMed ID: 30613102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the role of tryptophanyl-tRNA synthetase and associations with inflammatory markers and clinical outcomes in COVID-19 patients: A case-control study.
    Najimi N; Zahednasab H; Farahmand M; Fouladvand A; Talei GR; Bouzari B; Khanizadeh S; Karampoor S
    Microb Pathog; 2023 Oct; 183():106300. PubMed ID: 37567323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary structure of the gene for glycyl-tRNA synthetase from Bombyx mori.
    Nada S; Chang PK; Dignam JD
    J Biol Chem; 1993 Apr; 268(11):7660-7. PubMed ID: 8463296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the TIGN sequence in E. coli tryptophanyl-tRNA synthetase.
    Chan KW; Koeppe RE
    Biochim Biophys Acta; 1994 Apr; 1205(2):223-9. PubMed ID: 8155701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Released Tryptophanyl-tRNA Synthetase Stimulates Innate Immune Responses against Viral Infection.
    Lee HC; Lee ES; Uddin MB; Kim TH; Kim JH; Chathuranga K; Chathuranga WAG; Jin M; Kim S; Kim CJ; Lee JS
    J Virol; 2019 Jan; 93(2):. PubMed ID: 30355684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophanyl-tRNA Synthetase as a Potential Therapeutic Target.
    Ahn YH; Oh SC; Zhou S; Kim TD
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33926067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.