BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8404902)

  • 1. Determinants for the enhanced thermostability of hybrid (1-3,1-4)-beta-glucanases.
    Politz O; Simon O; Olsen O; Borriss R
    Eur J Biochem; 1993 Sep; 216(3):829-34. PubMed ID: 8404902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Bacillus (1-3,1-4)-beta-glucanases: engineering thermostable enzymes by construction of hybrid genes.
    Olsen O; Borriss R; Simon O; Thomsen KK
    Mol Gen Genet; 1991 Feb; 225(2):177-85. PubMed ID: 2005860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid bacillus endo-(1-3,1-4)-beta-glucanases: construction of recombinant genes and molecular properties of the gene products.
    Borriss R; Olsen O; Thomsen KK; von Wettstein D
    Carlsberg Res Commun; 1989; 54(2):41-54. PubMed ID: 2673278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1,3-1,4)-beta-glucanases secreted from yeast.
    Meldgaard M; Svendsen I
    Microbiology (Reading); 1994 Jan; 140 ( Pt 1)():159-66. PubMed ID: 8162185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Ca2+ on conformation and stability of three bacterial hybrid glucanases.
    Welfle K; Misselwitz R; Welfle H; Politz O; Borriss R
    Eur J Biochem; 1995 May; 229(3):726-35. PubMed ID: 7758469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual amino acids in the N-terminal loop region determine the thermostability and unfolding characteristics of bacterial glucanases.
    Welfle K; Misselwitz R; Politz O; Borriss R; Welfle H
    Protein Sci; 1996 Nov; 5(11):2255-65. PubMed ID: 8931144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans: homologies to other beta-glucanases.
    Borriss R; Buettner K; Maentsaelae P
    Mol Gen Genet; 1990 Jul; 222(2-3):278-83. PubMed ID: 2274030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Bacillus amyloliquefaciens X Bacillus licheniformis alpha-amylases. Construction, properties and sequence determinants.
    Conrad B; Hoang V; Polley A; Hofemeister J
    Eur J Biochem; 1995 Jun; 230(2):481-90. PubMed ID: 7607219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures and properties of de novo circularly permuted 1,3-1,4-beta-glucanases.
    Aÿ J; Hahn M; Decanniere K; Piotukh K; Borriss R; Heinemann U
    Proteins; 1998 Feb; 30(2):155-67. PubMed ID: 9489923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysine-Based Site-Directed Mutagenesis Increased Rigid β-Sheet Structure and Thermostability of Mesophilic 1,3-1,4-β-Glucanase.
    Niu C; Zhu L; Zhu P; Li Q
    J Agric Food Chem; 2015 Jun; 63(21):5249-56. PubMed ID: 25953154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of thermostability in bacterial 1,3-1,4-β-glucanases through spatial compartmentalization of mutational hotspots.
    Niu C; Zhu L; Xu X; Li Q
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1085-1097. PubMed ID: 27645297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3-1,4-beta-glucanase.
    Hahn M; Olsen O; Politz O; Borriss R; Heinemann U
    J Biol Chem; 1995 Feb; 270(7):3081-8. PubMed ID: 7852389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of active site carboxylic residues in Bacillus licheniformis 1,3-1,4-beta-D-glucan 4-glucanohydrolase by site-directed mutagenesis.
    Juncosa M; Pons J; Dot T; Querol E; Planas A
    J Biol Chem; 1994 May; 269(20):14530-5. PubMed ID: 8182059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Improvement of thermostability of beta-1,3-1,4-glucanase from Bacillus amyloliquefaciens BS5582 through in vitro evolution].
    Qin J; Gao W; Li Q; Li Y; Zheng F; Liu C; Gu G
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1293-301. PubMed ID: 21141122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium thermocellum thermostable lichenase with circular permutations and modifications in the N-terminal region retains its activity and thermostability.
    Tyurin AА; Sadovskaya NS; Nikiforova KhR; Mustafaev ON; Komakhin RA; Fadeev VS; Goldenkova-Pavlova IV
    Biochim Biophys Acta; 2015 Jan; 1854(1):10-9. PubMed ID: 25448724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutanase from a Paenibacillus isolate: nucleotide sequence of the gene and properties of recombinant enzymes.
    Sumitomo N; Saeki K; Ozaki K; Ito S; Kobayashi T
    Biochim Biophys Acta; 2007 Apr; 1770(4):716-24. PubMed ID: 17270351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation binding to a Bacillus (1,3-1,4)-beta-glucanase. Geometry, affinity and effect on protein stability.
    Keitel T; Meldgaard M; Heinemann U
    Eur J Biochem; 1994 May; 222(1):203-14. PubMed ID: 8200344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcalorimetric determination of the thermostability of three hybrid (1-3,1-4)-beta-glucanases.
    Welfle K; Misselwitz R; Welfle H; Simon O; Politz O; Borriss R
    J Biomol Struct Dyn; 1994 Jun; 11(6):1417-24. PubMed ID: 7946082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Barley (1→3,1→4)-β-Glucan Endohydrolase Alleles Confer Increased Enzyme Thermostability.
    Lauer JC; Yap K; Cu S; Burton RA; Eglinton JK
    J Agric Food Chem; 2017 Jan; 65(2):421-428. PubMed ID: 27936680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.