BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 8405004)

  • 1. Physiological modelling of renal drug clearance.
    Janků I
    Eur J Clin Pharmacol; 1993; 44(6):513-9. PubMed ID: 8405004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of drug handling by the kidney using a physiological model of renal drug clearance.
    Janků I; Zvára K
    Eur J Clin Pharmacol; 1993; 44(6):521-4. PubMed ID: 8405005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principles of drug administration in renal insufficiency.
    Lam YW; Banerji S; Hatfield C; Talbert RL
    Clin Pharmacokinet; 1997 Jan; 32(1):30-57. PubMed ID: 9012555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saturable pharmacokinetics in the renal excretion of drugs.
    van Ginneken CA; Russel FG
    Clin Pharmacokinet; 1989 Jan; 16(1):38-54. PubMed ID: 2650954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro-in vivo extrapolation method to predict human renal clearance of drugs.
    Kunze A; Huwyler J; Poller B; Gutmann H; Camenisch G
    J Pharm Sci; 2014 Mar; 103(3):994-1001. PubMed ID: 24549735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new simple approach to study the effect of changes in urine flow and/or urine pH on renal clearance and its applications.
    Chiou WL
    Int J Clin Pharmacol Ther Toxicol; 1986 Oct; 24(10):519-27. PubMed ID: 3781671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does Secretory Clearance Follow Glomerular Filtration Rate in Chronic Kidney Diseases? Reconsidering the Intact Nephron Hypothesis.
    Chapron A; Shen DD; Kestenbaum BR; Robinson-Cohen C; Himmelfarb J; Yeung CK
    Clin Transl Sci; 2017 Sep; 10(5):395-403. PubMed ID: 28675584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies on drug disposition in rabbits. I. Renal excretion of iodopyracet and sulfamethizole.
    Katayama K; Ohtani H; Kawabe T; Mizuno H; Endoh M; Kakemi M; Koizumi T
    J Pharmacobiodyn; 1990 Feb; 13(2):97-107. PubMed ID: 2384854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of human pharmacokinetics - renal metabolic and excretion clearance.
    Fagerholm U
    J Pharm Pharmacol; 2007 Nov; 59(11):1463-71. PubMed ID: 17976256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional adaptation to reduction in renal mass.
    Hayslett JP
    Physiol Rev; 1979 Jan; 59(1):137-64. PubMed ID: 220646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear kinetics of the thiamine cation in humans: saturation of nonrenal clearance and tubular reabsorption.
    Weber W; Nitz M; Looby M
    J Pharmacokinet Biopharm; 1990 Dec; 18(6):501-23. PubMed ID: 2280348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Mechanistic PBPK Model to Predict Renal Clearance in Varying Stages of CKD by Incorporating Tubular Adaptation and Dynamic Passive Reabsorption.
    Huang W; Isoherranen N
    CPT Pharmacometrics Syst Pharmacol; 2020 Oct; 9(10):571-583. PubMed ID: 32977369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximal Tubular Secretory Clearance: A Neglected Partner of Kidney Function.
    Wang K; Kestenbaum B
    Clin J Am Soc Nephrol; 2018 Aug; 13(8):1291-1296. PubMed ID: 29490976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel minimal physiologically-based model for the prediction of passive tubular reabsorption and renal excretion clearance.
    Scotcher D; Jones C; Rostami-Hodjegan A; Galetin A
    Eur J Pharm Sci; 2016 Oct; 94():59-71. PubMed ID: 27033147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Investigation of tubular reabsorption of phosphates in patients with chronic kidney disease].
    Horáčková M; Schück O; Sotorník I; Franková J; Štollová M; Látová I; Malinská H; Urbanová J
    Vnitr Lek; 2015 Dec; 61(12):1034-8. PubMed ID: 26806498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of captopril on renal hemodynamics and segmental tubular reabsorption of sodium in humans.
    Hannedouche T; Delgado A; Gnionsahe A; Lacour B; Grunfeld JP
    J Cardiovasc Pharmacol; 1989 Jan; 13(1):84-9. PubMed ID: 2468940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubular handling of fluid and electrolytes during ovine pregnancy.
    Cha SC; Aberdeen GW; Mukaddam-Daher S; Quillen EW; Nuwayhid BS
    Am J Physiol; 1993 Aug; 265(2 Pt 2):F278-84. PubMed ID: 8368336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between glucose and sodium excretion in the new-born dog.
    Baker JT; Kleinman LI
    J Physiol; 1974 Nov; 243(1):45-61. PubMed ID: 4449064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urinary excretion of drugs in chronic renal impairment with respect to changes their tubular handling by residual nephrons.
    Schück O; Grafnetterová J; Nádvorniková H; Prát V
    Int J Clin Pharmacol Biopharm; 1976 Sep; 14(2):149-54. PubMed ID: 1036732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of bradykinin on proximal tubular sodium reabsorption in the dog: evidence for functional nephron heterogeneity.
    Stein JH; Congbalay RC; Karsh DL; Osgood RW; Ferris TF
    J Clin Invest; 1972 Jul; 51(7):1709-21. PubMed ID: 5032521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.