These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 8405245)

  • 61. Anticipatory postural adjustments in stance and grip.
    Wing AM; Flanagan JR; Richardson J
    Exp Brain Res; 1997 Aug; 116(1):122-30. PubMed ID: 9305821
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fingertip moisture is optimally modulated during object manipulation.
    André T; Lefèvre P; Thonnard JL
    J Neurophysiol; 2010 Jan; 103(1):402-8. PubMed ID: 19906876
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Time-of-day effects on force control during object manipulation.
    Jasper I; Hermsdörfer J
    Eur J Appl Physiol; 2007 Nov; 101(4):437-44. PubMed ID: 17641909
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Programmed and triggered actions to rapid load changes during precision grip.
    Johansson RS; Westling G
    Exp Brain Res; 1988; 71(1):72-86. PubMed ID: 3416959
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Precision-grip force changes in the anatomical and prosthetic limb during predictable load increases.
    Weeks DL; Wallace SA; Noteboom JT
    Exp Brain Res; 2000 Jun; 132(3):404-10. PubMed ID: 10883390
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Friction at the digit-object interface scales the sensorimotor transformation for grip responses to pulling loads.
    Cole KJ; Johansson RS
    Exp Brain Res; 1993; 95(3):523-32. PubMed ID: 8224079
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Individual finger forces acting on a grasped object during shaking actions.
    Kinoshita H; Kawai S; Ikuta K; Teraoka T
    Ergonomics; 1996 Feb; 39(2):243-56. PubMed ID: 8851529
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Selective perturbation of visual input during prehension movements. 2. The effects of changing object size.
    Paulignan Y; Jeannerod M; MacKenzie C; Marteniuk R
    Exp Brain Res; 1991; 87(2):407-20. PubMed ID: 1769391
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Responses in glabrous skin mechanoreceptors during precision grip in humans.
    Westling G; Johansson RS
    Exp Brain Res; 1987; 66(1):128-40. PubMed ID: 3582527
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The integration of haptically acquired size information in the programming of precision grip.
    Gordon AM; Forssberg H; Johansson RS; Westling G
    Exp Brain Res; 1991; 83(3):483-8. PubMed ID: 2026191
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Time-varying enhancement of human cortical excitability mediated by cutaneous inputs during precision grip.
    Johansson RS; Lemon RN; Westling G
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):761-75. PubMed ID: 7707242
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Visual size cues in the programming of manipulative forces during precision grip.
    Gordon AM; Forssberg H; Johansson RS; Westling G
    Exp Brain Res; 1991; 83(3):477-82. PubMed ID: 2026190
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Rapid Visuomotor Corrective Responses during Transport of Hand-Held Objects Incorporate Novel Object Dynamics.
    Diamond JS; Nashed JY; Johansson RS; Wolpert DM; Flanagan JR
    J Neurosci; 2015 Jul; 35(29):10572-80. PubMed ID: 26203151
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Development of human precision grip. I: Basic coordination of force.
    Forssberg H; Eliasson AC; Kinoshita H; Johansson RS; Westling G
    Exp Brain Res; 1991; 85(2):451-7. PubMed ID: 1893993
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Variable and intermittent grip force control in response to differing load force dynamics.
    Grover FM; Nalepka P; Silva PL; Lorenz T; Riley MA
    Exp Brain Res; 2019 Mar; 237(3):687-703. PubMed ID: 30542754
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition.
    Forssberg H; Eliasson AC; Kinoshita H; Westling G; Johansson RS
    Exp Brain Res; 1995; 104(2):323-30. PubMed ID: 7672024
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Predictability influences finger force control when catching a free-falling object.
    Nowak DA; Hermsdörfer J
    Exp Brain Res; 2004 Feb; 154(4):411-6. PubMed ID: 14685805
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome.
    Raghavan P; Krakauer JW; Gordon AM
    Brain; 2006 Jun; 129(Pt 6):1415-25. PubMed ID: 16597653
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Moving a hand-held object: Reconstruction of referent coordinate and apparent stiffness trajectories.
    Ambike S; Zhou T; Zatsiorsky VM; Latash ML
    Neuroscience; 2015 Jul; 298():336-56. PubMed ID: 25896800
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems.
    Hermsdörfer J; Hagl E; Nowak DA
    Hum Mov Sci; 2004 Nov; 23(5):643-62. PubMed ID: 15589626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.