BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 8405251)

  • 21. Unbiased and robust quantification of synchronization between spikes and local field potential.
    Li Z; Cui D; Li X
    J Neurosci Methods; 2016 Aug; 269():33-8. PubMed ID: 27180930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induced cortical oscillations in turtle cortex are coherent at the mesoscale of population activity, but not at the microscale of the membrane potential of neurons.
    Hoseini MS; Pobst J; Wright N; Clawson W; Shew W; Wessel R
    J Neurophysiol; 2017 Nov; 118(5):2579-2591. PubMed ID: 28794194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensorimotor cortical influences on cuneate nucleus rhythmic activity in the anesthetized cat.
    Marino J; Canedo A; Aguilar J
    Neuroscience; 2000; 95(3):657-73. PubMed ID: 10670434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortex.
    Eggermont JJ; Smith GM
    J Neurophysiol; 1995 Jan; 73(1):227-45. PubMed ID: 7714568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional coupling shows stronger stimulus dependency for fast oscillations than for low-frequency components in striate cortex of awake monkey.
    Frien A; Eckhorn R
    Eur J Neurosci; 2000 Apr; 12(4):1466-78. PubMed ID: 10762374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex.
    Litaudon P; Garcia S; Buonviso N
    Neuroscience; 2008 Oct; 156(3):781-7. PubMed ID: 18790020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features.
    Eckhorn R
    Prog Brain Res; 1994; 102():405-26. PubMed ID: 7800830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two types of intrinsic oscillations in neurons of the lateral and basolateral nuclei of the amygdala.
    Pape HC; Paré D; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):205-16. PubMed ID: 9425192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hemodynamic signals correlate tightly with synchronized gamma oscillations.
    Niessing J; Ebisch B; Schmidt KE; Niessing M; Singer W; Galuske RA
    Science; 2005 Aug; 309(5736):948-51. PubMed ID: 16081740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A procedure for testing across-condition rhythmic spike-field association change.
    Lepage KQ; Gregoriou GG; Kramer MA; Aoi M; Gotts SJ; Eden UT; Desimone R
    J Neurosci Methods; 2013 Feb; 213(1):43-62. PubMed ID: 23164959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements.
    Donoghue JP; Sanes JN; Hatsopoulos NG; Gaál G
    J Neurophysiol; 1998 Jan; 79(1):159-73. PubMed ID: 9425187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synchronous high-frequency oscillations in cat area 18.
    Brosch M; Bauer R; Eckhorn R
    Eur J Neurosci; 1995 Jan; 7(1):86-95. PubMed ID: 7711940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulus locking and feature selectivity prevail in complementary frequency ranges of V1 local field potentials.
    Kayser C; König P
    Eur J Neurosci; 2004 Jan; 19(2):485-9. PubMed ID: 14725644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cortical dynamics during naturalistic sensory stimulations: experiments and models.
    Mazzoni A; Brunel N; Cavallari S; Logothetis NK; Panzeri S
    J Physiol Paris; 2011; 105(1-3):2-15. PubMed ID: 21907800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulus-dependent gamma (30-50 Hz) oscillations in simple and complex fast rhythmic bursting cells in primary visual cortex.
    Cardin JA; Palmer LA; Contreras D
    J Neurosci; 2005 Jun; 25(22):5339-50. PubMed ID: 15930382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The lateral posterior-pulvinar complex modulation of stimulus-dependent oscillations in the cat visual cortex.
    Molotchnikoff S; Shumikhina S
    Vision Res; 1996 Jul; 36(14):2037-46. PubMed ID: 8776470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase relationships support a role for coordinated activity in the indirect pathway in organizing slow oscillations in basal ganglia output after loss of dopamine.
    Walters JR; Hu D; Itoga CA; Parr-Brownlie LC; Bergstrom DA
    Neuroscience; 2007 Jan; 144(2):762-76. PubMed ID: 17112675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulus-dependent modulations of correlated high-frequency oscillations in cat visual cortex.
    Brosch M; Bauer R; Eckhorn R
    Cereb Cortex; 1997; 7(1):70-6. PubMed ID: 9023434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retino-cortical stimulus frequency-dependent gamma coupling: evidence and functional implications of oscillatory potentials.
    Todorov MI; Kékesi KA; Borhegyi Z; Galambos R; Juhász G; Hudetz AG
    Physiol Rep; 2016 Oct; 4(19):. PubMed ID: 27702884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response properties of local field potentials and multiunit activity in the mouse visual cortex.
    Land R; Engler G; Kral A; Engel AK
    Neuroscience; 2013 Dec; 254():141-51. PubMed ID: 24035827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.