These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8405270)

  • 1. Physiological studies in deafferented visual cortex cells of cats following transplantation of fetal xenografts from the rat's cortex.
    Yinon U; Shemesh R; Arda H; Dobin G; Jaros PP
    Exp Neurol; 1993 Aug; 122(2):335-41. PubMed ID: 8405270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crossmodal audio-visual interactions in the primary visual cortex of the visually deprived cat: a physiological and anatomical study.
    Sanchez-Vives MV; Nowak LG; Descalzo VF; Garcia-Velasco JV; Gallego R; Berbel P
    Prog Brain Res; 2006; 155():287-311. PubMed ID: 17027395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A comparison of the take of embryonic amygdala and visual cortex transplants in the rat brain in connection with the possible compensation of functional disorders].
    Lushchekina EA; Lushchekin VS; Khonicheva NM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1991; 41(5):1059-69. PubMed ID: 1722372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of early visual experience followed by prolonged dark rearing on visual cortex cells of cats.
    Yinon U; Goshen S
    Metab Pediatr Syst Ophthalmol; 1982; 6(3-4):251-68. PubMed ID: 7185017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unilateral interruption of geniculate and callosal inputs to the visual cortex of cats: ocular dominance and responsiveness of cells in the deafferented and in the intact hemispheres.
    Yinon U; Achiron A
    Exp Neurol; 1988 Mar; 99(3):579-88. PubMed ID: 3342840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isochronic transplantation of neonatal grafts in the visual cortex of cats: responsiveness, ocular dominance and specificity of cortical cells to visual stimulation.
    Yinon U; Gelerstein S
    Exp Brain Res; 1991; 87(1):181-92. PubMed ID: 1756824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological studies on the effects on single cells of silver electrodes implanted in the visual cortex of cats.
    Spivak I; Yinon U; Yanko L; Shefer Y
    Metab Pediatr Syst Ophthalmol (1985); 1998; 21(1-4):1-5. PubMed ID: 11548788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
    Nakagama H; Tani T; Tanaka S
    Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of reversible cooling of cat's primary visual cortex on the responses of area 21a neurons.
    Michalski A; Wimborne BM; Henry GH
    J Physiol; 1993 Jul; 466():133-56. PubMed ID: 8410689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unilateral visual cortex deafferentation induces changes in receptive field properties of cortical cells in the intact hemisphere of normal and of monocularly deprived cats.
    Yinon U; Podell M
    Brain Res; 1987 Jun; 430(2):205-13. PubMed ID: 3607513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological studies of visual cortex reorganization following cortical deafferentation in neonatal cats.
    Yinon U; Shemesh R; Arda H; Rosner M; Jaros PP
    Can J Physiol Pharmacol; 1995 Sep; 73(9):1378-88. PubMed ID: 8748988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of visual cortical cells of the intact and the deafferented hemisphere of unilateral optic tract sectioned acute and chronic adult cats.
    Podell M; Yinon U; Hammer A
    Exp Brain Res; 1984; 55(1):91-6. PubMed ID: 6086374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced adaptation of visual cortical cells to visual stimulation in aged cats.
    Hua T; Li G; Tang C; Wang Z; Chang S
    Neurosci Lett; 2009 Feb; 451(1):25-8. PubMed ID: 19121368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD; Siegler BA; Voelker CC; Shouval HZ; Paradiso MA; Bear MF
    J Neurophysiol; 2006 May; 95(5):2947-50. PubMed ID: 16481452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific neurotrophic interactions between cortical and subcortical visual structures in developing rat: in vivo studies.
    Haun F; Cunningham TJ
    J Comp Neurol; 1987 Feb; 256(4):561-9. PubMed ID: 3558889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminar distribution of isocortical neurons projecting to occipital grafts in neonate and adult rats.
    Gaillard F; Létang J; Frappé I; Gaillard A
    Exp Neurol; 2000 Mar; 162(1):225-33. PubMed ID: 10716903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specification of cortical neurons by visuomotor experience.
    Imbert M; Fregnac Y
    Prog Brain Res; 1983; 58():427-36. PubMed ID: 6635201
    [No Abstract]   [Full Text] [Related]  

  • 18. [Role of interoceptive afferentation in the activities of the cortical portion of the visual analyzer].
    Pityk NI
    Kosm Biol Aviakosm Med; 1979; 13(6):48-53. PubMed ID: 502426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Requirements for experience dependent changes in the circuitry of cat visual cortex.
    Singer W
    Arch Ital Biol; 1978 Sep; 116(3-4):393-401. PubMed ID: 219794
    [No Abstract]   [Full Text] [Related]  

  • 20. Excitatory synaptic inputs to spiny stellate cells in cat visual cortex.
    Stratford KJ; Tarczy-Hornoch K; Martin KA; Bannister NJ; Jack JJ
    Nature; 1996 Jul; 382(6588):258-61. PubMed ID: 8717041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.