These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8405363)

  • 21. Buthionine sulfoximine induced cataracts in mice contain insolubilized crystallins with calpain II cleavage sites.
    David LL; Calvin HI; Fu SC
    Exp Eye Res; 1994 Oct; 59(4):501-4. PubMed ID: 7859826
    [No Abstract]   [Full Text] [Related]  

  • 22. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of calpain on hereditary cataractous rat, ICR/f.
    Takeuchi N; Ito H; Namiki K; Kamei A
    Biol Pharm Bull; 2001 Nov; 24(11):1246-51. PubMed ID: 11725957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear cataract and light scattering in cultured lenses from guinea pig and rabbit.
    Fukiage C; Azuma M; Nakamura Y; Tamada Y; Shearer TR
    Curr Eye Res; 1998 Jun; 17(6):623-35. PubMed ID: 9663852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis map.
    Lampi KJ; Shih M; Ueda Y; Shearer TR; David LL
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):216-24. PubMed ID: 11773034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The sequence of human betaB1-crystallin cDNA allows mass spectrometric detection of betaB1 protein missing portions of its N-terminal extension.
    David LL; Lampi KJ; Lund AL; Smith JB
    J Biol Chem; 1996 Feb; 271(8):4273-9. PubMed ID: 8626774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR).
    Inomata M; Nomura K; Takehana M; Saido TC; Kawashima S; Shumiya S
    Biochim Biophys Acta; 1997 Nov; 1362(1):11-23. PubMed ID: 9434095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modifications to rat lens major intrinsic protein in selenite-induced cataract.
    Schey KL; Fowler JG; Shearer TR; David L
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):657-67. PubMed ID: 10067969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of various calpain inhibitors in reduction of light scattering, protein precipitation and nuclear cataract in vitro.
    Mathur P; Gupta SK; Wegener AR; Breipohl W; Ahrend MH; Sharma YD; Gupta YK; Vajpayee RB
    Curr Eye Res; 2000 Dec; 21(6):926-33. PubMed ID: 11262616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of origin of two polypeptides of 4 and 5 kD isolated from human lenses.
    Srivastava OP; Srivastava K; Silney C
    Invest Ophthalmol Vis Sci; 1994 Jan; 35(1):207-14. PubMed ID: 7507906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review of selenite cataract.
    Shearer TR; David LL; Anderson RS; Azuma M
    Curr Eye Res; 1992 Apr; 11(4):357-69. PubMed ID: 1526166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lp82 is the dominant form of calpain in young mouse lens.
    Ma H; Hata I; Shih M; Fukiage C; Nakamura Y; Azuma M; Shearer TR
    Exp Eye Res; 1999 Apr; 68(4):447-56. PubMed ID: 10192802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resistance of human betaB2-crystallin to in vivo modification.
    Zhang Z; David LL; Smith DL; Smith JB
    Exp Eye Res; 2001 Aug; 73(2):203-11. PubMed ID: 11446770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification of calpain II from rat lens and determination of endogenous substrates.
    David LL; Shearer TR
    Exp Eye Res; 1986 Mar; 42(3):227-38. PubMed ID: 3011481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential effects of galactose-induced cataractogenesis on the soluble crystallins of rat lens.
    Huang WQ; Zhang JP; Fu SC
    Exp Eye Res; 1990 Jul; 51(1):79-85. PubMed ID: 2373184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function.
    Takata T; Nakamura-Hirota T; Inoue R; Morishima K; Sato N; Sugiyama M; Fujii N
    FEBS J; 2018 Jun; 285(12):2263-2277. PubMed ID: 29676852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decreased chaperone activity of alpha-crystallin in selenite cataract may result from selenite-induced aggregation.
    Yan H; Harding JJ; Hui YN; Li MY
    Eye (Lond); 2003 Jul; 17(5):637-45. PubMed ID: 12855974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carnosine ameliorates lens protein turbidity formations by inhibiting calpain proteolysis and ultraviolet C-induced degradation.
    Liao JH; Lin IL; Huang KF; Kuo PT; Wu SH; Wu TH
    J Agric Food Chem; 2014 Jun; 62(25):5932-8. PubMed ID: 24932548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatty acids influence the efficacy of lutein in the modulation of α-crystallin chaperone function: Evidence from selenite induced cataract rat model.
    Padmanabha S; Vallikannan B
    Biochem Biophys Res Commun; 2020 Aug; 529(2):425-431. PubMed ID: 32703446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.