These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8405363)

  • 41. Modifications of the water-insoluble human lens alpha-crystallins.
    Lund AL; Smith JB; Smith DL
    Exp Eye Res; 1996 Dec; 63(6):661-72. PubMed ID: 9068373
    [TBL] [Abstract][Full Text] [Related]  

  • 42. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation.
    Kim I; Saito T; Fujii N; Kanamoto T; Fujii N
    Amino Acids; 2016 Dec; 48(12):2855-2866. PubMed ID: 27600614
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isomerization of aspartyl residues in crystallins and its influence upon cataract.
    Fujii N; Takata T; Fujii N; Aki K
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):183-91. PubMed ID: 26275494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Human lens beta-crystallin solubility.
    Feng J; Smith DL; Smith JB
    J Biol Chem; 2000 Apr; 275(16):11585-90. PubMed ID: 10766773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of the site of glycation of gamma-II-crystallin by (14C)-fructose.
    Pennington J; Harding JJ
    Biochim Biophys Acta; 1994 May; 1226(2):163-7. PubMed ID: 8204663
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Changes in calpain II mRNA in young rat lens during maturation and cataract formation.
    Ma H; Shih M; Throneberg DB; David LL; Shearer TR
    Exp Eye Res; 1997 Mar; 64(3):437-45. PubMed ID: 9196396
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Local microdomain structure in the terminal extensions of betaA3- and betaB2-crystallins.
    Sergeev YV; David LL; Chen HC; Hope JN; Hejtmancik JF
    Mol Vis; 1998 Jun; 4():9. PubMed ID: 9636238
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Age-related changes of calpain II and alpha-crystallin in the lens of hereditary cataract (Nakano) mouse.
    Yoshida H; Murachi T; Tsukahara I
    Curr Eye Res; 1985 Sep; 4(9):983-8. PubMed ID: 2998702
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Age-related cleavages of crystallins in human lens cortical fiber cells generate a plethora of endogenous peptides and high molecular weight complexes.
    Su SP; Song X; Xavier D; Aquilina JA
    Proteins; 2015 Oct; 83(10):1878-86. PubMed ID: 26238763
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes in crystallin concentration in rat aqueous and vitreous humors after selenium-induced reversible cortical cataract.
    Watanabe H; Komoto M; David LL; Shearer TR
    Jpn J Ophthalmol; 1990; 34(4):472-8. PubMed ID: 2082066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract.
    Chen Y; Yi L; Yan G; Fang Y; Jang Y; Wu X; Zhou X; Wei L
    Curr Eye Res; 2010 Jul; 35(7):620-30. PubMed ID: 20597648
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Primary structure of beta s-crystallin from human lens.
    Zarina S; Abbasi A; Zaidi ZH
    Biochem J; 1992 Oct; 287 ( Pt 2)(Pt 2):375-81. PubMed ID: 1445197
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.
    Sakaue H; Takata T; Fujii N; Sasaki H; Fujii N
    Biochim Biophys Acta; 2015 Jan; 1854(1):1-9. PubMed ID: 25450505
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lens crystallin changes associated with amphibian metamorphosis: involvement of a beta-crystallin polypeptide.
    Jiang YJ; Chiou SH; Chang WC
    Biochem Biophys Res Commun; 1989 Nov; 164(3):1423-30. PubMed ID: 2590209
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of the crystallins.
    Slingsby C; Clout NJ
    Eye (Lond); 1999 Jun; 13 ( Pt 3b)():395-402. PubMed ID: 10627816
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amelioration of cataracts and proteolysis in cultured lenses by cysteine protease inhibitor E64.
    Shearer TR; Azuma M; David LL; Murachi T
    Invest Ophthalmol Vis Sci; 1991 Mar; 32(3):533-40. PubMed ID: 1848210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The degradation of alpha-crystallin at its carboxyl-terminal portion by calpain in bovine lens.
    Yoshida H; Yumoto N; Tsukahara I; Murachi T
    Invest Ophthalmol Vis Sci; 1986 Aug; 27(8):1269-73. PubMed ID: 3015824
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional and structural studies of alpha-crystallin from galactosemic rat lenses.
    Huang FY; Ho Y; Shaw TS; Chuang SA
    Biochem Biophys Res Commun; 2000 Jun; 273(1):197-202. PubMed ID: 10873586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization and regulation of lens-specific calpain Lp82.
    Fukiage C; Nakajima E; Ma H; Azuma M; Shearer TR
    J Biol Chem; 2002 Jun; 277(23):20678-85. PubMed ID: 11904300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.