BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8405659)

  • 1. Oxidation of 6-hydroxydopamine catalyzed by tyrosinase.
    Rodriguez-López JN; Varón R; García-Cánovas F
    Int J Biochem; 1993 Aug; 25(8):1175-82. PubMed ID: 8405659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH on the oxidation pathway of dopamine catalyzed by tyrosinase.
    García-Moreno M; Rodríguez-López JN; Martínez-Ortiz F; Tudela J; Varón R; García-Cánovas F
    Arch Biochem Biophys; 1991 Aug; 288(2):427-34. PubMed ID: 1910309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic oxidation of 2,4,5-trihydroxyphenylalanine by tyrosinase: identification and evolution of intermediates.
    Rodríguez-López JN; Bañón-Arnao M; Martinez-Ortiz F; Tudela J; Acosta M; Varón R; García-Cánovas F
    Biochim Biophys Acta; 1992 Nov; 1160(2):221-8. PubMed ID: 1445949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of the neurotoxin 6-hydroxydopamine by peroxidase/H2O2 oxidation of dopamine.
    Napolitano A; Crescenzi O; Pezzella A; Prota G
    J Med Chem; 1995 Mar; 38(6):917-22. PubMed ID: 7699708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical intermediates in dopamine oxidation by tyrosinase, and kinetic studies of the process.
    Jimenez M; Garcia-Carmona F; Garcia-Canovas F; Iborra JL; Lozano JA; Martinez F
    Arch Biochem Biophys; 1984 Dec; 235(2):438-48. PubMed ID: 6097187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate.
    Sugumaran M
    Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH on the oxidation pathway of alpha-methyldopa catalysed by tyrosinase.
    Serna Rodríguez P; Rodríguez López JN; Tudela J; Varón R; García Cánovas F
    Biochem J; 1990 Dec; 272(2):459-63. PubMed ID: 2125208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculating molar absorptivities for quinones: application to the measurement of tyrosinase activity.
    Muñoz JL; García-Molina F; Varón R; Rodriguez-Lopez JN; García-Cánovas F; Tudela J
    Anal Biochem; 2006 Apr; 351(1):128-38. PubMed ID: 16476401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosinase-catalyzed oxidation of 17beta-estradiol: structure elucidation of the products formed beyond catechol estrogen quinones.
    Pezzella A; Lista L; Napolitano A; d'Ischia M
    Chem Res Toxicol; 2005 Sep; 18(9):1413-9. PubMed ID: 16167833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic study on the effect of pH on the melanin biosynthesis pathway.
    Rodríguez-López JN; Tudela J; Varón R; García-Cánovas F
    Biochim Biophys Acta; 1991 Feb; 1076(3):379-86. PubMed ID: 1900435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic study of the transient phase of a chemical reaction system coupled to an enzymatically catalyzed step. Application to the oxidation of epinine by tyrosinase.
    Escribano J; García M; García Cánovas F; García Carmona F; Varón R; Tudela J; Lozano JA
    Biophys Chem; 1987 Jul; 27(1):15-25. PubMed ID: 3111559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of pH in the melanin biosynthesis pathway.
    Cánovas FG; García-Carmona F; Sánchez JV; Pastor JL; Teruel JA
    J Biol Chem; 1982 Aug; 257(15):8738-44. PubMed ID: 6807981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrite- and peroxide-dependent oxidation pathways of dopamine: 6-nitrodopamine and 6-hydroxydopamine formation as potential contributory mechanisms of oxidative stress- and nitric oxide-induced neurotoxicity in neuronal degeneration.
    Palumbo A; Napolitano A; Barone P; d'Ischia M
    Chem Res Toxicol; 1999 Dec; 12(12):1213-22. PubMed ID: 10604871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrometric method for the determination of tyrosinase activity.
    Solano-Muñoz F; Peñafiel R; Galindo JD
    Biochem J; 1985 Aug; 229(3):573-8. PubMed ID: 2996485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of hydroxyl radical attack on dopa, dopamine, 6-hydroxydopa, and 6-hydroxydopamine.
    Nappi AJ; Vass E; Prota G; Memoli S
    Pigment Cell Res; 1995 Dec; 8(6):283-93. PubMed ID: 8789736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine.
    Sugumaran M; Nelson E
    Arch Insect Biochem Physiol; 1998; 38(1):44-52. PubMed ID: 9589603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic study of the oxidation of 4-hydroxyanisole catalyzed by tyrosinase.
    Espín JC; Varón R; Tudela J; García-Cánovas F
    Biochem Mol Biol Int; 1997 May; 41(6):1265-76. PubMed ID: 9161722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of reverse transcriptase by tyrosinase generated quinones related to levodopa and dopamine.
    Wick MM; Fitzgerald G
    Chem Biol Interact; 1981 Dec; 38(1):99-107. PubMed ID: 6173137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A continuous spectrophotometric assay for determination of the aureusidin synthase activity of tyrosinase.
    Jiménez-Atiénzar M; Pérez-Gilabert M; Cabanes J; Escribano J; Gandía-Herrero F; García-Carmona F
    Phytochem Anal; 2010; 21(3):273-8. PubMed ID: 20029997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.