These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 8405669)
1. Calcium regulation of neural fold formation: visualization of the actin cytoskeleton in living chick embryos. Ferreira MC; Hilfer SR Dev Biol; 1993 Oct; 159(2):427-40. PubMed ID: 8405669 [TBL] [Abstract][Full Text] [Related]
2. A reexamination of the role of microfilaments in neurulation in the chick embryo. Schoenwolf GC; Folsom D; Moe A Anat Rec; 1988 Jan; 220(1):87-102. PubMed ID: 3348489 [TBL] [Abstract][Full Text] [Related]
3. Calcium and neurulation in mammalian embryos. II. Effects of cytoskeletal inhibitors and calcium antagonists on the neural folds of rat embryos. Smedley MJ; Stanisstreet M J Embryol Exp Morphol; 1986 Apr; 93():167-78. PubMed ID: 3734682 [TBL] [Abstract][Full Text] [Related]
4. Studies on the mechanisms of neurulation in the chick: interrelationship of contractile proteins, microfilaments, and the shape of neuroepithelial cells. Lee HY; Nagele RG J Exp Zool; 1985 Aug; 235(2):205-15. PubMed ID: 3903030 [TBL] [Abstract][Full Text] [Related]
5. Multistep role for actin in initial closure of the mesencephalic neural groove in the chick embryo. van Straaten HW; Sieben I; Hekking JW Dev Dyn; 2002 May; 224(1):103-8. PubMed ID: 11984878 [TBL] [Abstract][Full Text] [Related]
6. Further evidence of extrinsic forces in bending of the neural plate. Smith JL; Schoenwolf GC J Comp Neurol; 1991 May; 307(2):225-36. PubMed ID: 1856324 [TBL] [Abstract][Full Text] [Related]
7. Bending of the neural plate during mouse spinal neurulation is independent of actin microfilaments. Ybot-Gonzalez P; Copp AJ Dev Dyn; 1999 Jul; 215(3):273-83. PubMed ID: 10398537 [TBL] [Abstract][Full Text] [Related]
8. The role of microfilaments in cranial neurulation in rat embryos: effects of short-term exposure to cytochalasin D. Morriss-Kay G; Tuckett F J Embryol Exp Morphol; 1985 Aug; 88():333-48. PubMed ID: 4078537 [TBL] [Abstract][Full Text] [Related]
9. Quantitative analyses of neuroepithelial cell shapes during bending of the mouse neural plate. Smith JL; Schoenwolf GC; Quan J J Comp Neurol; 1994 Apr; 342(1):144-51. PubMed ID: 8207124 [TBL] [Abstract][Full Text] [Related]
10. Second messenger regulation of occlusion of the spinal neurocoel in the chick embryo. Desmond ME; Duzy MJ; Federici BD Dev Dyn; 1993 Aug; 197(4):291-306. PubMed ID: 8292826 [TBL] [Abstract][Full Text] [Related]
11. A scanning electron microscopic and flame spectrometry study on the role of Ca2+ in amphibian neurulation using papaverine inhibition and ionophore induction of morphogenetic movement. Moran DJ J Exp Zool; 1976 Dec; 198(3):409-16. PubMed ID: 826603 [TBL] [Abstract][Full Text] [Related]
12. Neural tube closure defects caused by papaverine in explanted early chick embryos. Lee H; Nagele RG Teratology; 1979 Oct; 20(2):321-31. PubMed ID: 392801 [TBL] [Abstract][Full Text] [Related]
13. Calcium and neurulation in mammalian embryos. Smedley MJ; Stanisstreet M J Embryol Exp Morphol; 1985 Oct; 89():1-14. PubMed ID: 3937881 [TBL] [Abstract][Full Text] [Related]
14. Studies on the mechanisms of neurulation in the chick: possible involvement of myosin in elevation of neural folds. Lee HY; Kosciuk MC; Nagele RG; Roisen FJ J Exp Zool; 1983 Mar; 225(3):449-57. PubMed ID: 6341501 [TBL] [Abstract][Full Text] [Related]
15. Studies on the mechanisms of neurulation in the chick: morphometric analysis of the relationship between regional variations in cell shape and sites of motive force generation. Nagele RG; Lee HY J Exp Zool; 1987 Feb; 241(2):197-205. PubMed ID: 3559504 [TBL] [Abstract][Full Text] [Related]
16. Calcium dependence and contraction in somite formation. Chernoff EA; Hilfer SR Tissue Cell; 1982; 14(3):435-49. PubMed ID: 6815826 [TBL] [Abstract][Full Text] [Related]
17. Cell cycle and neuroepithelial cell shape during bending of the chick neural plate. Smith JL; Schoenwolf GC Anat Rec; 1987 Jun; 218(2):196-206. PubMed ID: 3619087 [TBL] [Abstract][Full Text] [Related]
18. Patterns of cell movement in early organ primordia of the chick embryo. Hilfer SR; Marrero L; Sheffield JB Anat Rec; 1990 Aug; 227(4):508-17. PubMed ID: 2393102 [TBL] [Abstract][Full Text] [Related]
19. Ionophore-induced cell shape changes in Xenopus early embryos. Stanisstreet M; Smedley MJ Cytobios; 1986; 46(186-187):155-65. PubMed ID: 3091326 [TBL] [Abstract][Full Text] [Related]
20. A potential role for spectrin during neurulation. Sadler TW; Burridge K; Yonker J J Embryol Exp Morphol; 1986 Jun; 94():73-82. PubMed ID: 3531378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]