BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8406006)

  • 1. Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo.
    Almouzni G; Wolffe AP
    Genes Dev; 1993 Oct; 7(10):2033-47. PubMed ID: 8406006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remodeling of regulatory nucleoprotein complexes on the Xenopus hsp70 promoter during meiotic maturation of the Xenopus oocyte.
    Landsberger N; Wolffe AP
    EMBO J; 1997 Jul; 16(14):4361-73. PubMed ID: 9250680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly.
    Kamakaka RT; Bulger M; Kadonaga JT
    Genes Dev; 1993 Sep; 7(9):1779-95. PubMed ID: 8370526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promoter structure and transcriptional activation with chromatin templates assembled in vitro. A single Gal4-VP16 dimer binds to chromatin or to DNA with comparable affinity.
    Pazin MJ; Hermann JW; Kadonaga JT
    J Biol Chem; 1998 Dec; 273(51):34653-60. PubMed ID: 9852139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor.
    Wong J; Shi YB; Wolffe AP
    Genes Dev; 1995 Nov; 9(21):2696-711. PubMed ID: 7590246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HMG17 is a chromatin-specific transcriptional coactivator that increases the efficiency of transcription initiation.
    Paranjape SM; Krumm A; Kadonaga JT
    Genes Dev; 1995 Aug; 9(16):1978-91. PubMed ID: 7649479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase.
    Wong J; Patterton D; Imhof A; Guschin D; Shi YB; Wolffe AP
    EMBO J; 1998 Jan; 17(2):520-34. PubMed ID: 9430643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of transcriptional antirepression by GAL4-VP16.
    Croston GE; Laybourn PJ; Paranjape SM; Kadonaga JT
    Genes Dev; 1992 Dec; 6(12A):2270-81. PubMed ID: 1459451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constraints on transcriptional activator function contribute to transcriptional quiescence during early Xenopus embryogenesis.
    Almouzni G; Wolffe AP
    EMBO J; 1995 Apr; 14(8):1752-65. PubMed ID: 7737126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of DNA replication in vitro by the transcriptional activation domain of GAL4-VP16.
    Cheng LZ; Workman JL; Kingston RE; Kelly TJ
    Proc Natl Acad Sci U S A; 1992 Jan; 89(2):589-93. PubMed ID: 1309949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation domain-mediated enhancement of activator binding to chromatin in mammalian cells.
    Bunker CA; Kingston RE
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):10820-5. PubMed ID: 8855264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programming of a repressed but committed chromatin structure during early development.
    Prioleau MN; Buckle RS; Méchali M
    EMBO J; 1995 Oct; 14(20):5073-84. PubMed ID: 7588635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin dynamics at the hTERT promoter during transcriptional activation and repression by c-Myc and Mnt in Xenopus leavis oocytes.
    Wahlström T; Belikov S; Arsenian Henriksson M
    Exp Cell Res; 2013 Dec; 319(20):3160-9. PubMed ID: 23860446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro.
    Huh JR; Park JM; Kim M; Carlson BA; Hatfield DL; Lee BJ
    Biochem Biophys Res Commun; 1999 Mar; 256(1):45-51. PubMed ID: 10066420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling transcriptional regulation using microinjection into Xenopus oocytes.
    Robinett CC; Dunaway M
    Methods; 1999 Feb; 17(2):151-60. PubMed ID: 10075893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct activation and anti-repression functions of GAL4-VP16 use distinct molecular mechanisms.
    Lyons JG; Chambon P
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):899-905. PubMed ID: 8554536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiation on chromatin templates in a yeast RNA polymerase II transcription system.
    Lorch Y; LaPointe JW; Kornberg RD
    Genes Dev; 1992 Dec; 6(12A):2282-7. PubMed ID: 1459452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic characterization of rbt mutants that enhance basal transcription from core promoters in Saccharomyces cerevisiae.
    Kunoh T; Sakuno T; Furukawa T; Kaneko Y; Harashima S
    J Biochem; 2000 Oct; 128(4):575-84. PubMed ID: 11011139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programming the transcriptional state of replicating methylated dna.
    Stunkel W; Ait-Si-Ali S; Jones PL; Wolffe AP
    J Biol Chem; 2001 Jun; 276(23):20743-9. PubMed ID: 11278800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between chromatin and transcription complex assembly regulates gene expression during early development.
    Prioleau MN; Huet J; Sentenac A; Méchali M
    Cell; 1994 May; 77(3):439-49. PubMed ID: 8181062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.