These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8406233)

  • 1. [New evolvement of antiarrhythmic drugs].
    Kanno M
    Nihon Yakurigaku Zasshi; 1993 Sep; 102(3):215-23. PubMed ID: 8406233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular electropharmacology of amiodarone.
    Kodama I; Kamiya K; Toyama J
    Cardiovasc Res; 1997 Jul; 35(1):13-29. PubMed ID: 9302343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cibenzoline, a new class Ia antiarrhythmic drug, on various membrane ionic currents and action potentials of guinea-pig ventricular cells.
    Sato T; Wu B; Kiyosue T; Arita M
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Aug; 350(2):167-73. PubMed ID: 7527502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SD-3212, a new class I and IV antiarrhythmic drug: a potent inhibitor of the muscarinic acetylcholine-receptor-operated potassium current in guinea-pig atrial cells.
    Hara Y; Nakaya H
    Br J Pharmacol; 1995 Nov; 116(6):2750-6. PubMed ID: 8591000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological mechanisms for antiarrhythmic efficacy and positive inotropy of liriodenine, a natural aporphine alkaloid from Fissistigma glaucescens.
    Chang GJ; Wu MH; Wu YC; Su MJ
    Br J Pharmacol; 1996 Aug; 118(7):1571-83. PubMed ID: 8842417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic concepts in cellular cardiac electrophysiology: Part II: Block of ion channels by antiarrhythmic drugs.
    Whalley DW; Wendt DJ; Grant AO
    Pacing Clin Electrophysiol; 1995 Sep; 18(9 Pt 1):1686-704. PubMed ID: 7491312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Ion channels and arrhythmias].
    Borchard U; Hafner D
    Z Kardiol; 2000; 89 Suppl 3():6-12. PubMed ID: 10810780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of MS-551, a new class III antiarrhythmic drug, on action potential and membrane currents in rabbit ventricular myocytes.
    Nakaya H; Tohse N; Takeda Y; Kanno M
    Br J Pharmacol; 1993 May; 109(1):157-63. PubMed ID: 7684298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanisms of action of class III anti-arrhythmia agents].
    Adamantidis MM
    Arch Mal Coeur Vaiss; 1995 Jan; 88 Spec No 1():33-40. PubMed ID: 7786143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why are some antiarrhythmic drugs proarrhythmic? Cardiac arrhythmia study by bifurcation analysis.
    Chay TR
    J Electrocardiol; 1995; 28 Suppl():191-7. PubMed ID: 8656110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticholinergic effects of class III antiarrhythmic drugs in guinea pig atrial cells. Different molecular mechanisms.
    Mori K; Hara Y; Saito T; Masuda Y; Nakaya H
    Circulation; 1995 Jun; 91(11):2834-43. PubMed ID: 7758191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of action of antiarrhythmic agents.
    Grant AO
    Am Heart J; 1992 Apr; 123(4 Pt 2):1130-6. PubMed ID: 1313200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical possibilities for the development of novel antiarrhythmic drugs.
    Varró A; Biliczki P; Iost N; Virág L; Hála O; Kovács P; Mátyus P; Papp JG
    Curr Med Chem; 2004 Jan; 11(1):1-11. PubMed ID: 14754422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the diuretic agent indapamide on Na+, transient outward, and delayed rectifier currents in canine atrial myocytes.
    Lu Y; Yue L; Wang Z; Nattel S
    Circ Res; 1998 Jul; 83(2):158-66. PubMed ID: 9686755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular electrophysiology of WAY-123,398, a new class III antiarrhythmic agent: specificity of IK block and lack of reverse use dependence in cat ventricular myocytes.
    Spinelli W; Moubarak IF; Parsons RW; Colatsky TJ
    Cardiovasc Res; 1993 Sep; 27(9):1580-91. PubMed ID: 8287434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological effects of EGIS-7229, a new antiarrhythmic agent, in isolated mammalian and human cardiac tissues.
    Pankucsi C; Bányász T; Magyar J; Gyönös I; Kovács A; Varró A; Szénási G; Nánási PP
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Mar; 355(3):398-405. PubMed ID: 9089672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel antiarrhythmic compounds with combined class IB and class III mode of action.
    Mátyus P; Varga I; Rettegi T; Simay A; Kállay N; Károlyházy L; Kocsis A; Varró A; Pénzes I; Papp JG
    Curr Med Chem; 2004 Jan; 11(1):61-9. PubMed ID: 14754426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The new antiarrhythmic drug vernakalant: ex vivo study of human atrial tissue from sinus rhythm and chronic atrial fibrillation.
    Wettwer E; Christ T; Endig S; Rozmaritsa N; Matschke K; Lynch JJ; Pourrier M; Gibson JK; Fedida D; Knaut M; Ravens U
    Cardiovasc Res; 2013 Apr; 98(1):145-54. PubMed ID: 23341576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrhythmia control by prolonging repolarization: the concept and its potential therapeutic impact.
    Singh BN
    Eur Heart J; 1993 Nov; 14 Suppl H():14-23. PubMed ID: 7904934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three thiadiazinone derivatives, EMD 60417, EMD 66430, and EMD 66398, with class III antiarrhythmic activity but different electrophysiologic profiles.
    Himmel HM; Wettwer E; Lues I; Beier N; Jonas R; Ravens U
    J Cardiovasc Pharmacol; 2001 Sep; 38(3):438-49. PubMed ID: 11486248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.