These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8406266)

  • 21. Anatomy and physiology of the larynx.
    Noordzij JP; Ossoff RH
    Otolaryngol Clin North Am; 2006 Feb; 39(1):1-10. PubMed ID: 16469651
    [No Abstract]   [Full Text] [Related]  

  • 22. Direct measurement of onset and offset phonation threshold pressure in normal subjects.
    Plant RL; Freed GL; Plant RE
    J Acoust Soc Am; 2004 Dec; 116(6):3640-6. PubMed ID: 15658714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Non-linear model of glottic vibration. Potential clinical implications].
    Giovanni A; Ouaknine M; Garrel R; Ayache S; Robert D
    Rev Laryngol Otol Rhinol (Bord); 2002; 123(5):273-7. PubMed ID: 12741286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Onset and offset phonation threshold flow in excised canine larynges.
    Regner MF; Tao C; Zhuang P; Jiang JJ
    Laryngoscope; 2008 Jul; 118(7):1313-7. PubMed ID: 18401267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.
    Kucinschi BR; Scherer RC; DeWitt KJ; Ng TT
    J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments.
    Tokuda IT; Horácek J; Svec JG; Herzel H
    J Acoust Soc Am; 2007 Jul; 122(1):519-31. PubMed ID: 17614509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thyroid cartilage and vocal fold reduction: a new phonosurgical method for male-to-female transsexuals.
    Kunachak S; Prakunhungsit S; Sujjalak K
    Ann Otol Rhinol Laryngol; 2000 Nov; 109(11):1082-6. PubMed ID: 11090002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [In vivo nuclear magnetic resonance tomography measurement of vocal cord temperature during phonation].
    Klingholz F; Reiman V; Vogel T
    Folia Phoniatr (Basel); 1991; 43(4):171-6. PubMed ID: 1769626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of four distinct glottal configurations in classical singing--a pilot study.
    Herbst CT; Ternström S; Svec JG
    J Acoust Soc Am; 2009 Mar; 125(3):EL104-9. PubMed ID: 19275279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Pseudoglottis after laryngeal trauma with bilateral recurrent laryngeal nerve paralysis].
    Ptok M
    HNO; 1993 Jan; 41(1):41-6. PubMed ID: 8449788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Characteristic automatisms of speech functions based on roentgen kinematography studies].
    Cvejić D; Panić I; Spalajković M
    Monatsschr Ohrenheilkd Laryngorhinol; 1966 Aug; 100(8):369-72; discussion 372. PubMed ID: 16114429
    [No Abstract]   [Full Text] [Related]  

  • 34. Measurement of vocal fold collision forces during phonation: methods and preliminary data.
    Gunter HE; Howe RD; Zeitels SM; Kobler JB; Hillman RE
    J Speech Lang Hear Res; 2005 Jun; 48(3):567-76. PubMed ID: 16197273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fragments of a Greek Trilogy: impact on phonation.
    Ferrone C; Leung G; Ramig LO
    J Voice; 2004 Dec; 18(4):488-99. PubMed ID: 15567050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L; Pelorson X; Henrich N; Ruty N
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of an in vivo canine model of phonation with a constant air pressure source.
    Nasri S; Namazie A; Ye M; Kreiman J; Gerratt BR; Berke GS
    Laryngoscope; 1996 Jun; 106(6):745-51. PubMed ID: 8656961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phonatory effects of thyroid cartilage fractures.
    Stanley RB; Cooper DS; Florman SH
    Ann Otol Rhinol Laryngol; 1987; 96(5):493-6. PubMed ID: 3674644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
    Fulcher LP; Scherer RC; Zhai G; Zhu Z
    J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The occurrence of the Coanda effect in pulsatile flow through static models of the human vocal folds.
    Erath BD; Plesniak MW
    J Acoust Soc Am; 2006 Aug; 120(2):1000-11. PubMed ID: 16938987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.