BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8406365)

  • 21. Methionine sulfoximine prevents the accumulation of large neutral amino acids in brain of portacaval-shunted rats.
    Rigotti P; Jonung T; Peters JC; James JH; Fischer JE
    J Neurochem; 1985 Mar; 44(3):929-33. PubMed ID: 3973598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kidney plays a major role in ammonia homeostasis after portasystemic shunting in patients with cirrhosis.
    Olde Damink SW; Dejong CH; Deutz NE; Redhead DN; Hayes PC; Soeters PB; Jalan R
    Am J Physiol Gastrointest Liver Physiol; 2006 Aug; 291(2):G189-94. PubMed ID: 16455791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy.
    Hawkins RA; Jessy J; Mans AM; De Joseph MR
    J Neurochem; 1993 Mar; 60(3):1000-6. PubMed ID: 8436955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preservation of portal pressure improves growth and metabolic profile in the male portacaval-shunted rat.
    Dasarathy S; Mullen KD; Conjeevaram HS; Kaminsky-Russ K; Wills LA; McCullough AJ
    Dig Dis Sci; 2002 Sep; 47(9):1936-42. PubMed ID: 12353833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of portacaval shunting on hyperdynamic circulation in bile duct-ligated cirrhotic rats.
    Wong J; Zhang Y; Lee SS
    J Hepatol; 1997 Feb; 26(2):369-75. PubMed ID: 9059959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Portacaval shunting and hyperammonemia stimulate the uptake of L-[3H] arginine but not of L-[3H]nitroarginine into rat brain synaptosomes.
    Rao VL; Audet RM; Butterworth RF
    J Neurochem; 1997 Jan; 68(1):337-43. PubMed ID: 8978744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interorgan metabolism of ornithine phenylacetate (OP)--a novel strategy for treatment of hyperammonemia.
    Dadsetan S; Sørensen M; Bak LK; Vilstrup H; Ott P; Schousboe A; Jalan R; Keiding S; Waagepetersen HS
    Biochem Pharmacol; 2013 Jan; 85(1):115-23. PubMed ID: 23103564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency.
    Tizianello A; De Ferrari G; Garibotto G; Gurreri G; Robaudo C
    J Clin Invest; 1980 May; 65(5):1162-73. PubMed ID: 7364943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain glucose levels in portacaval-shunted rats with chronic, moderate hyperammonemia: implications for determination of local cerebral glucose utilization.
    Cruz NF; Dienel GA
    J Cereb Blood Flow Metab; 1994 Jan; 14(1):113-24. PubMed ID: 8263046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutamine metabolism in the kidney during induction of, and recovery from, metabolic acidosis in the rat.
    Parry DM; Brosnan JT
    Biochem J; 1978 Aug; 174(2):387-96. PubMed ID: 708390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of portacaval anastomosis on glutamine synthetase activities in liver, brain, and skeletal muscle.
    Girard G; Butterworth RF
    Dig Dis Sci; 1992 Jul; 37(7):1121-6. PubMed ID: 1352200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Renal amino acid metabolism during endotoxemia in the rat.
    Hallemeesch MM; Cobben DC; Dejong CH; Soeters PB; Deutz NE
    J Surg Res; 2000 Aug; 92(2):193-200. PubMed ID: 10896821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutamine metabolism and neuropathological disorders in experimental hepatic encephalopathy: effect of transplanted hepatocytes.
    Mariani P; Coudray-Lucas C; Baudrimont M; Ribeiro J; Legendre C; Delelo R; Cynober L; Balladur P; Nordlinger B
    Surgery; 1996 Jul; 120(1):93-9. PubMed ID: 8693429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the metabolic disturbances caused by end-to-side and side-to-side portacaval shunts.
    Hawkins PA; DeJoseph MR; Viña JR; Hawkins RA
    J Appl Physiol (1985); 1996 Mar; 80(3):885-91. PubMed ID: 8964752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyperammonaemia does not impair brain function in the absence of net glutamine synthesis.
    Hawkins RA; Jessy J
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):697-703. PubMed ID: 1872806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decreased plasma and tissue isoleucine levels after simulated gastrointestinal bleeding by blood gavages in chronic portacaval shunted rats.
    Olde Damink SW; Dejong CH; Deutz NE; Soeters PB
    Gut; 1997 Mar; 40(3):418-24. PubMed ID: 9135535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Kinetics of nitrogenous metabolites in the kidney during chronic tetrachloromethane hepatitis].
    Savilov PN; Molchanov DV
    Patol Fiziol Eksp Ter; 2014; (2):56-60. PubMed ID: 25318165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure.
    Bosoi CR; Yang X; Huynh J; Parent-Robitaille C; Jiang W; Tremblay M; Rose CF
    Free Radic Biol Med; 2012 Apr; 52(7):1228-35. PubMed ID: 22300646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Local cerebral glucose metabolism in rats with chronic portacaval shunts.
    Cruz NF; Duffy TE
    J Cereb Blood Flow Metab; 1983 Sep; 3(3):311-20. PubMed ID: 6874740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chronic inhibition of brain protein synthesis after portacaval shunting. A possible pathogenic mechanism in chronic hepatic encephalopathy in the rat.
    Wasterlain CG; Lockwood AH; Conn M
    Neurology; 1978 Mar; 28(3):233-8. PubMed ID: 564477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.