These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 8407060)
1. In vivo examination of the dynamic properties of the human heel pad. Kinoshita H; Ogawa T; Kuzuhara K; Ikuta K Int J Sports Med; 1993 Aug; 14(6):312-9. PubMed ID: 8407060 [TBL] [Abstract][Full Text] [Related]
2. The damping properties of the venous plexus of the heel region of the foot during simulated heelstrike. Weijers RE; Kessels AG; Kemerink GJ J Biomech; 2005 Dec; 38(12):2423-30. PubMed ID: 16214490 [TBL] [Abstract][Full Text] [Related]
3. Mechanical energy and effective foot mass during impact loading of walking and running. Chi KJ; Schmitt D J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749 [TBL] [Abstract][Full Text] [Related]
4. Significance of heel pad confinement for the shock absorption at heel strike. Jørgensen U; Ekstrand J Int J Sports Med; 1988 Dec; 9(6):468-73. PubMed ID: 3253241 [TBL] [Abstract][Full Text] [Related]
5. The mechanical properties of the heel pad in elderly adults. Kinoshita H; Francis PR; Murase T; Kawai S; Ogawa T Eur J Appl Physiol Occup Physiol; 1996; 73(5):404-9. PubMed ID: 8803499 [TBL] [Abstract][Full Text] [Related]
6. Deformation characteristics of the heel region of the shod foot during a simulated heel strike: the effect of varying midsole hardness. Aerts P; De Clercq D J Sports Sci; 1993 Oct; 11(5):449-61. PubMed ID: 8301705 [TBL] [Abstract][Full Text] [Related]
7. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies. Even-Tzur N; Weisz E; Hirsch-Falk Y; Gefen A Biomed Mater Eng; 2006; 16(5):289-99. PubMed ID: 17075164 [TBL] [Abstract][Full Text] [Related]
8. The mechanical characteristics of the human heel pad during foot strike in running: an in vivo cineradiographic study. De Clercq D; Aerts P; Kunnen M J Biomech; 1994 Oct; 27(10):1213-22. PubMed ID: 7962009 [TBL] [Abstract][Full Text] [Related]
9. The effects of isolation on the mechanics of the human heel pad. Aerts P; Ker RF; de Clercq D; Ilsley DW J Anat; 1996 Apr; 188 ( Pt 2)(Pt 2):417-23. PubMed ID: 8621341 [TBL] [Abstract][Full Text] [Related]
10. Shock absorbency of factors in the shoe/heel interaction--with special focus on role of the heel pad. Jørgensen U; Bojsen-Møller F Foot Ankle; 1989 Jun; 9(6):294-9. PubMed ID: 2744671 [TBL] [Abstract][Full Text] [Related]
11. Effects of varying material properties on the load deformation characteristics of heel cushions. Sun PC; Wei HW; Chen CH; Wu CH; Kao HC; Cheng CK Med Eng Phys; 2008 Jul; 30(6):687-92. PubMed ID: 17888713 [TBL] [Abstract][Full Text] [Related]
12. Force-deformation properties of the human heel pad during barefoot walking. Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425 [TBL] [Abstract][Full Text] [Related]
13. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability. Spears IR; Miller-Young JE Clin Biomech (Bristol); 2006 Feb; 21(2):204-12. PubMed ID: 16289518 [TBL] [Abstract][Full Text] [Related]
14. The influence of lateral heel flare of running shoes on pronation and impact forces. Nigg BM; Morlock M Med Sci Sports Exerc; 1987 Jun; 19(3):294-302. PubMed ID: 3600244 [TBL] [Abstract][Full Text] [Related]
15. Influence of heel height on ankle joint moments in running. Reinschmidt C; Nigg BM Med Sci Sports Exerc; 1995 Mar; 27(3):410-6. PubMed ID: 7752869 [TBL] [Abstract][Full Text] [Related]
16. Footwear affects the behavior of low back muscles when jogging. Ogon M; Aleksiev AR; Spratt KF; Pope MH; Saltzman CL Int J Sports Med; 2001 Aug; 22(6):414-9. PubMed ID: 11531033 [TBL] [Abstract][Full Text] [Related]