BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 8407831)

  • 21. Characterization of the ugp region containing the genes for the phoB dependent sn-glycerol-3-phosphate transport system of Escherichia coli.
    Schweizer H; Boos W
    Mol Gen Genet; 1984; 197(1):161-8. PubMed ID: 6392822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two modes of ligand binding in maltose-binding protein of Escherichia coli. Functional significance in active transport.
    Hall JA; Ganesan AK; Chen J; Nikaido H
    J Biol Chem; 1997 Jul; 272(28):17615-22. PubMed ID: 9211910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The MalK protein of the ATP-binding cassette transporter for maltose of Escherichia coli is accessible to protease digestion from the periplasmic side of the membrane.
    Schneider E; Hunke S; Tebbe S
    J Bacteriol; 1995 Sep; 177(18):5364-7. PubMed ID: 7665528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell envelope proteins involved in the transport of maltose and sn-glycerol-3-phosphate in Escherichia coli.
    Boos W
    J Cell Physiol; 1976 Dec; 89(4):529-41. PubMed ID: 795812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maltose transport system of Escherichia coli: an ABC-type transporter.
    Nikaido H
    FEBS Lett; 1994 Jun; 346(1):55-8. PubMed ID: 8206159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence-function relationships in MalG, an inner membrane protein from the maltose transport system in Escherichia coli.
    Dassa E
    Mol Microbiol; 1993 Jan; 7(1):39-47. PubMed ID: 8437519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter.
    Alvarez FJ; Orelle C; Huang Y; Bajaj R; Everly RM; Klug CS; Davidson AL
    Mol Microbiol; 2015 Dec; 98(5):878-94. PubMed ID: 26268698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional consequences of mutations in the conserved 'signature sequence' of the ATP-binding-cassette protein MalK.
    Schmees G; Stein A; Hunke S; Landmesser H; Schneider E
    Eur J Biochem; 1999 Dec; 266(2):420-30. PubMed ID: 10561582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational characterization of TTHA0379: A potential glycerophosphocholine binding protein of Ugp ATP-binding cassette transporter.
    Chandravanshi M; Gogoi P; Kanaujia SP
    Gene; 2016 Nov; 592(2):260-8. PubMed ID: 27395429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter.
    Covitz KM; Panagiotidis CH; Hor LI; Reyes M; Treptow NA; Shuman HA
    EMBO J; 1994 Apr; 13(7):1752-9. PubMed ID: 8157012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATP-driven MalK dimer closure and reopening and conformational changes of the "EAA" motifs are crucial for function of the maltose ATP-binding cassette transporter (MalFGK2).
    Daus ML; Grote M; Müller P; Doebber M; Herrmann A; Steinhoff HJ; Dassa E; Schneider E
    J Biol Chem; 2007 Aug; 282(31):22387-96. PubMed ID: 17545154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli.
    Davidson AL; Nikaido H
    J Biol Chem; 1990 Mar; 265(8):4254-60. PubMed ID: 2155217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The maltose-maltodextrin transport system of Escherichia coli.
    Shuman HA
    Ann Microbiol (Paris); 1982 Jan; 133A(1):153-9. PubMed ID: 7041738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of a binding protein-dependent transport system for sn-glycerol-3-phosphate in Escherichia coli that is part of the pho regulon.
    Schweizer H; Argast M; Boos W
    J Bacteriol; 1982 Jun; 150(3):1154-63. PubMed ID: 7042685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disulfide cross-linking reveals a site of stable interaction between C-terminal regulatory domains of the two MalK subunits in the maltose transport complex.
    Samanta S; Ayvaz T; Reyes M; Shuman HA; Chen J; Davidson AL
    J Biol Chem; 2003 Sep; 278(37):35265-71. PubMed ID: 12813052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo.
    Mimmack ML; Gallagher MP; Pearce SR; Hyde SC; Booth IR; Higgins CF
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8257-61. PubMed ID: 2682642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein.
    Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M
    J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI.
    Reidl J; Römisch K; Ehrmann M; Boos W
    J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Truncation of MalF results in lactose transport via the maltose transport system of Escherichia coli.
    Merino G; Shuman HA
    J Biol Chem; 1998 Jan; 273(4):2435-44. PubMed ID: 9442094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional purification of a bacterial ATP-binding cassette transporter protein (MalK) from the cytoplasmic fraction of an overproducing strain.
    Schneider E; Linde M; Tebbe S
    Protein Expr Purif; 1995 Feb; 6(1):10-4. PubMed ID: 7756834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.