BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8407936)

  • 1. Transition state stabilization by chloramphenicol acetyltransferase. Role of a water molecule bound to threonine 174.
    Lewendon A; Shaw WV
    J Biol Chem; 1993 Oct; 268(28):20997-1001. PubMed ID: 8407936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for transition-state stabilization by serine-148 in the catalytic mechanism of chloramphenicol acetyltransferase.
    Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1990 Feb; 29(8):2075-80. PubMed ID: 2109633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetyl coenzyme A binding by chloramphenicol acetyltransferase. Hydrophobic determinants of recognition and catalysis.
    Day PJ; Shaw WV
    J Biol Chem; 1992 Mar; 267(8):5122-7. PubMed ID: 1544895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steroid recognition by chloramphenicol acetyltransferase: engineering and structural analysis of a high affinity fusidic acid binding site.
    Murray IA; Cann PA; Day PJ; Derrick JP; Sutcliffe MJ; Shaw WV; Leslie AG
    J Mol Biol; 1995 Dec; 254(5):993-1005. PubMed ID: 7500366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative binding modes for chloramphenicol and 1-substituted chloramphenicol analogues revealed by site-directed mutagenesis and X-ray crystallography of chloramphenicol acetyltransferase.
    Murray IA; Lewendon A; Williams JA; Cullis PM; Shaw WV; Leslie AG
    Biochemistry; 1991 Apr; 30(15):3763-70. PubMed ID: 2015231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of the imidazole ring of His-195 at the active site of chloramphenicol acetyltransferase.
    Murray IA; Lewendon A; Shaw WV
    J Biol Chem; 1991 Jun; 266(18):11695-8. PubMed ID: 2050670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of hydrogen bonding in enzyme-substrate complexes of chloramphenicol acetyltransferase by infrared spectroscopy and site-directed mutagenesis.
    Murray IA; Derrick JP; White AJ; Drabble K; Wharton CW; Shaw WV
    Biochemistry; 1994 Aug; 33(33):9826-30. PubMed ID: 8060990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic analysis of substrate binding and catalysis in dihydrolipoyl transacetylase (E2p).
    Mattevi A; Obmolova G; Kalk KH; Teplyakov A; Hol WG
    Biochemistry; 1993 Apr; 32(15):3887-901. PubMed ID: 8471601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic mechanism of chloramphenicol acetyltransferase: the role of ternary complex interconversion in rate determination.
    Ellis J; Bagshaw CR; Shaw WV
    Biochemistry; 1995 Dec; 34(51):16852-9. PubMed ID: 8527461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement of catalytic histidine-195 of chloramphenicol acetyltransferase: evidence for a general base role for glutamate.
    Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1994 Feb; 33(7):1944-50. PubMed ID: 7906544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of a distal hydrogen bonding group in stabilizing the transition state in subtilisin BPN'.
    Braxton S; Wells JA
    J Biol Chem; 1991 Jun; 266(18):11797-800. PubMed ID: 1904870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitutions in the active site of chloramphenicol acetyltransferase: role of a conserved aspartate.
    Lewendon A; Murray IA; Kleanthous C; Cullis PM; Shaw WV
    Biochemistry; 1988 Sep; 27(19):7385-90. PubMed ID: 3061455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of a reactive thiol group from the active site of chloramphenicol acetyltransferase.
    Lewendon A; Shaw WV
    Biochem J; 1990 Dec; 272(2):499-504. PubMed ID: 2268277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate binding to chloramphenicol acetyltransferase: evidence for negative cooperativity from equilibrium and kinetic constants for binary and ternary complexes.
    Ellis J; Bagshaw CR; Shaw WV
    Biochemistry; 1991 Nov; 30(44):10806-13. PubMed ID: 1932000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala-->Ser and Val-->Thr substitutions in T4 lysozyme.
    Blaber M; Lindstrom JD; Gassner N; Xu J; Heinz DW; Matthews BW
    Biochemistry; 1993 Oct; 32(42):11363-73. PubMed ID: 8218201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand interaction energies and molecular recognition by chloramphenicol acetyltransferase.
    Cullis PM; Lewendon A; Shaw WV; Williams JA
    Biochemistry; 1991 Apr; 30(15):3758-62. PubMed ID: 1849737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic fluorescence of chloramphenicol acetyltransferase: responses to ligand binding and assignment of the contributions of tryptophan residues by site-directed mutagenesis.
    Ellis J; Murray IA; Shaw WV
    Biochemistry; 1991 Nov; 30(44):10799-805. PubMed ID: 1931999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetyl coenzyme A binding by chloramphenicol acetyltransferase: long-range electrostatic determinants of coenzyme A recognition.
    Day PJ; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1992 May; 31(17):4198-205. PubMed ID: 1567867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary truncations of a hydrogen bond to ribose involved in transition-state stabilization by cytidine deaminase.
    Carlow DC; Short SA; Wolfenden R
    Biochemistry; 1998 Feb; 37(5):1199-203. PubMed ID: 9477944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.