BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 8407954)

  • 1. Ca(2+)-dependent and thapsigargin-inhibited phosphorylation of Na+,K(+)-ATPase catalytic domain following chimeric recombination with Ca(2+)-ATPase.
    Sumbilla C; Lu L; Lewis DE; Inesi G; Ishii T; Takeyasu K; Feng Y; Fambrough DM
    J Biol Chem; 1993 Oct; 268(28):21185-92. PubMed ID: 8407954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)-, ouabain-, Ca(2+)-, and thapsigargin-sensitive ATPase activity expressed in chimeras between the calcium and the sodium pump alpha subunits.
    Ishii T; Lemas MV; Takeyasu K
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):6103-7. PubMed ID: 8016122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxy-terminal regions of the sarcoplasmic/endoplasmic reticulum Ca(2+)- and the Na+/K(+)-ATPases control their K+ sensitivity.
    Ishii T; Hata F; Lemas MV; Fambrough DM; Takeyasu K
    Biochemistry; 1997 Jan; 36(2):442-51. PubMed ID: 9003197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane segment M3 is essential to thapsigargin sensitivity of the sarcoplasmic reticulum Ca(2+)-ATPase.
    Nørregaard A; Vilsen B; Andersen JP
    J Biol Chem; 1994 Oct; 269(43):26598-601. PubMed ID: 7929387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The amino-terminal 200 amino acids of the plasma membrane Na+,K+-ATPase alpha subunit confer ouabain sensitivity on the sarcoplasmic reticulum Ca(2+)-ATPase.
    Ishii T; Takeyasu K
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):8881-5. PubMed ID: 8415625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric Ca(2+)-ATPase/Na+,K(+)-ATPase molecules. Their phosphoenzyme intermediates and sensitivity to Ca2+ and thapsigargin.
    Nørregaard A; Vilsen B; Andersen JP
    FEBS Lett; 1993 Dec; 336(2):248-54. PubMed ID: 8262239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transduction and kinetic regulation by the peptide segment connecting phosphorylation and cation binding domains in transport ATPases.
    Garnett C; Sumbilla C; Belda FF; Chen L; Inesi G
    Biochemistry; 1996 Aug; 35(34):11019-25. PubMed ID: 8780503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overlapping effects of S3 stalk segment mutations on the affinity of Ca2+-ATPase (SERCA) for thapsigargin and cyclopiazonic acid.
    Ma H; Zhong L; Inesi G; Fortea I; Soler F; Fernandez-Belda F
    Biochemistry; 1999 Nov; 38(47):15522-7. PubMed ID: 10569935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of various amino acid 256 mutations on sarcoplasmic/endoplasmic reticulum Ca2+ ATPase function and their role in the cellular adaptive response to thapsigargin.
    Yu M; Lin J; Khadeer M; Yeh Y; Inesi G; Hussain A
    Arch Biochem Biophys; 1999 Feb; 362(2):225-32. PubMed ID: 9989931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the S3 stalk segment in the thapsigargin concentration dependence of sarco-endoplasmic reticulum Ca2+ ATPase inhibition.
    Zhong L; Inesi G
    J Biol Chem; 1998 May; 273(21):12994-8. PubMed ID: 9582334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding domain of oligomycin on Na(+),K(+)-ATPase.
    Homareda H; Ishii T; Takeyasu K
    Eur J Pharmacol; 2000 Jul; 400(2-3):177-83. PubMed ID: 10988331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps.
    Lytton J; Westlin M; Hanley MR
    J Biol Chem; 1991 Sep; 266(26):17067-71. PubMed ID: 1832668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms.
    Vilsen B; Andersen JP
    Biochemistry; 1998 Aug; 37(31):10961-71. PubMed ID: 9692989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of regions in the Ca(2+)-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban.
    Toyofuku T; Kurzydlowski K; Tada M; MacLennan DH
    J Biol Chem; 1993 Feb; 268(4):2809-15. PubMed ID: 8428955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-terminal 165 amino acids of the plasma membrane Ca(2+)-ATPase confer Ca2+/calmodulin sensitivity on the Na+,K(+)-ATPase alpha-subunit.
    Ishii T; Takeyasu K
    EMBO J; 1995 Jan; 14(1):58-67. PubMed ID: 7828596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 26 amino acids of an extracellular domain of the Na,K-ATPase alpha-subunit are sufficient for assembly with the Na,K-ATPase beta-subunit.
    Lemas MV; Hamrick M; Takeyasu K; Fambrough DM
    J Biol Chem; 1994 Mar; 269(11):8255-9. PubMed ID: 7907590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dissection of functional domains of the E1E2-ATPase using sodium and calcium pump chimeric molecules.
    Luckie DB; Lemas V; Boyd KL; Fambrough DM; Takeyasu K
    Biophys J; 1992 Apr; 62(1):220-6; discussion 226-7. PubMed ID: 1318102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural perturbation of the transmembrane region interferes with calcium binding by the Ca2+ transport ATPase.
    Sumbilla C; Cantilina T; Collins JH; Malak H; Lakowicz JR; Inesi G
    J Biol Chem; 1991 Jul; 266(19):12682-9. PubMed ID: 1829458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The carboxyl-terminal 161 amino acids of the Na,K-ATPase alpha-subunit are sufficient for assembly with the beta-subunit.
    Lemas MV; Takeyasu K; Fambrough DM
    J Biol Chem; 1992 Oct; 267(29):20987-91. PubMed ID: 1328216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.