BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 8408085)

  • 1. The role of fixator frame stiffness in the control of fracture healing. An experimental study.
    Goodship AE; Watkins PE; Rigby HS; Kenwright J
    J Biomech; 1993 Sep; 26(9):1027-35. PubMed ID: 8408085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The initial phase of fracture healing is specifically sensitive to mechanical conditions.
    Klein P; Schell H; Streitparth F; Heller M; Kassi JP; Kandziora F; Bragulla H; Haas NP; Duda GN
    J Orthop Res; 2003 Jul; 21(4):662-9. PubMed ID: 12798066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability.
    Lienau J; Schell H; Epari DR; Schütze N; Jakob F; Duda GN; Bail HJ
    J Orthop Res; 2006 Feb; 24(2):254-62. PubMed ID: 16435358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The course of bone healing is influenced by the initial shear fixation stability.
    Schell H; Epari DR; Kassi JP; Bragulla H; Bail HJ; Duda GN
    J Orthop Res; 2005 Sep; 23(5):1022-8. PubMed ID: 15878254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of compression on the healing of experimental tibial fractures.
    Sigurdsen U; Reikeras O; Utvag SE
    Injury; 2011 Oct; 42(10):1152-6. PubMed ID: 20850739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-magnitude high-frequency mechanical signals accelerate and augment endochondral bone repair: preliminary evidence of efficacy.
    Goodship AE; Lawes TJ; Rubin CT
    J Orthop Res; 2009 Jul; 27(7):922-30. PubMed ID: 19117066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical influences on tibial fracture healing.
    Kenwright J; Gardner T
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S179-90. PubMed ID: 9917638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixation technique influences osteogenesis of comminuted fractures.
    Claes L; Heitemeyer U; Krischak G; Braun H; Hierholzer G
    Clin Orthop Relat Res; 1999 Aug; (365):221-9. PubMed ID: 10627706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear does not necessarily inhibit bone healing.
    Bishop NE; van Rhijn M; Tami I; Corveleijn R; Schneider E; Ito K
    Clin Orthop Relat Res; 2006 Feb; 443():307-14. PubMed ID: 16462456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of active shear or compressive motion on fracture-healing.
    Park SH; O'Connor K; McKellop H; Sarmiento A
    J Bone Joint Surg Am; 1998 Jun; 80(6):868-78. PubMed ID: 9655105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are bone turnover markers capable of predicting callus consolidation during bone healing?
    Klein P; Bail HJ; Schell H; Michel R; Amthauer H; Bragulla H; Duda GN
    Calcif Tissue Int; 2004 Jul; 75(1):40-9. PubMed ID: 15148561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printing Adjustable Stiffness External Fixator for Mechanically Stimulated Healing of Tibial Fractures.
    Li H; Li D; Qiao F; Tang L; Han Q
    Biomed Res Int; 2021; 2021():8539416. PubMed ID: 34977247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical stimulation by external application of cyclic tensile strains does not effectively enhance bone healing.
    Augat P; Merk J; Wolf S; Claes L
    J Orthop Trauma; 2001 Jan; 15(1):54-60. PubMed ID: 11147689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis.
    Lill CA; Hesseln J; Schlegel U; Eckhardt C; Goldhahn J; Schneider E
    J Orthop Res; 2003 Sep; 21(5):836-42. PubMed ID: 12919871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain rate and timing of stimulation in mechanical modulation of fracture healing.
    Goodship AE; Cunningham JL; Kenwright J
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S105-15. PubMed ID: 9917631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing.
    Bartnikowski N; Claes LE; Koval L; Glatt V; Bindl R; Steck R; Ignatius A; Schuetz MA; Epari DR
    Acta Orthop; 2017 Apr; 88(2):217-222. PubMed ID: 27841708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental two degrees-of-freedom actuated external fixator for in vivo investigation of fracture healing.
    Bishop NE; Schneider E; Ito K
    Med Eng Phys; 2003 May; 25(4):335-40. PubMed ID: 12649019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep.
    Epari DR; Lienau J; Schell H; Witt F; Duda GN
    Bone; 2008 Oct; 43(4):734-9. PubMed ID: 18634913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear movement at the fracture site delays healing in a diaphyseal fracture model.
    Augat P; Burger J; Schorlemmer S; Henke T; Peraus M; Claes L
    J Orthop Res; 2003 Nov; 21(6):1011-7. PubMed ID: 14554213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.