BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 8408086)

  • 1. Kinetics of the lower extremities during drop landings from three heights.
    McNitt-Gray JL
    J Biomech; 1993 Sep; 26(9):1037-46. PubMed ID: 8408086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Biomechanical Comparison of Single-Leg Landing and Unplanned Sidestepping.
    Chinnasee C; Weir G; Sasimontonkul S; Alderson J; Donnelly C
    Int J Sports Med; 2018 Jul; 39(8):636-645. PubMed ID: 29902807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force.
    McNitt-Gray JL; Hester DM; Mathiyakom W; Munkasy BA
    J Biomech; 2001 Nov; 34(11):1471-82. PubMed ID: 11672722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of landing stiffness on joint kinetics and energetics in the lower extremity.
    Devita P; Skelly WA
    Med Sci Sports Exerc; 1992 Jan; 24(1):108-15. PubMed ID: 1548984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of lower extremity joints to energy dissipation during landings.
    Zhang SN; Bates BT; Dufek JS
    Med Sci Sports Exerc; 2000 Apr; 32(4):812-9. PubMed ID: 10776901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle dorsiflexion range of motion is associated with kinematic but not kinetic variables related to bilateral drop-landing performance at various drop heights.
    Howe LP; Bampouras TM; North J; Waldron M
    Hum Mov Sci; 2019 Apr; 64():320-328. PubMed ID: 30836206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-plane, multi-joint lower extremity support moments during a rapid deceleration task: Implications for knee loading.
    Podraza JT; White SC; Ramsey DK
    Hum Mov Sci; 2018 Apr; 58():155-164. PubMed ID: 29448160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of lower extremity work during the impact phase of jumping and weightlifting.
    Moolyk AN; Carey JP; Chiu LZ
    J Strength Cond Res; 2013 Dec; 27(12):3225-32. PubMed ID: 23442272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of lower limb stiffness between male and female dancers and athletes during drop jump landings.
    Ward RE; Fong Yan A; Orishimo KF; Kremenic IJ; Hagins M; Liederbach M; Hiller CE; Pappas E
    Scand J Med Sci Sports; 2019 Jan; 29(1):71-81. PubMed ID: 30242920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower extremity variability changes with drop-landing height manipulations.
    Nordin AD; Dufek JS
    Res Sports Med; 2017; 25(2):144-155. PubMed ID: 28105865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arch structure is associated with unique joint work, relative joint contributions and stiffness during landing.
    Powell DW; Queen RM; Williams DS
    Hum Mov Sci; 2016 Oct; 49():141-7. PubMed ID: 27391463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A little bit faster: Lower extremity joint kinematics and kinetics as recreational runners achieve faster speeds.
    Orendurff MS; Kobayashi T; Tulchin-Francis K; Tullock AMH; Villarosa C; Chan C; Kraus E; Strike S
    J Biomech; 2018 Apr; 71():167-175. PubMed ID: 29472010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Professional Dancers Distinct Biomechanical Pattern during Multidirectional Landings.
    Azevedo AM; Oliveira R; Vaz JR; Cortes N
    Med Sci Sports Exerc; 2019 Mar; 51(3):539-547. PubMed ID: 30363007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex differences in lower extremity biomechanics during single leg landings.
    Schmitz RJ; Kulas AS; Perrin DH; Riemann BL; Shultz SJ
    Clin Biomech (Bristol, Avon); 2007 Jul; 22(6):681-8. PubMed ID: 17499896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling.
    Fregly BJ; Zajac FE
    J Biomech; 1996 Jan; 29(1):81-90. PubMed ID: 8839020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighted vest effects on impact forces and joint work during vertical jump landings in men and women.
    Harry JR; James CR; Dufek JS
    Hum Mov Sci; 2019 Feb; 63():156-163. PubMed ID: 30553141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running.
    Prilutsky BI; Zatsiorsky VM
    J Biomech; 1994 Jan; 27(1):25-34. PubMed ID: 8106533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Prophylactic Knee Bracing on Lower Limb Kinematics, Kinetics, and Energetics During Double-Leg Drop Landing at 2 Heights.
    Ewing KA; Begg RK; Galea MP; Lee PV
    Am J Sports Med; 2016 Jul; 44(7):1753-61. PubMed ID: 27159284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.