These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 8408087)
1. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. Martin RB; Boardman DL J Biomech; 1993 Sep; 26(9):1047-54. PubMed ID: 8408087 [TBL] [Abstract][Full Text] [Related]
2. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. Martin RB; Ishida J J Biomech; 1989; 22(5):419-26. PubMed ID: 2777816 [TBL] [Abstract][Full Text] [Related]
3. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. Martin RB; Lau ST; Mathews PV; Gibson VA; Stover SM J Biomech; 1996 Dec; 29(12):1515-21. PubMed ID: 8945649 [TBL] [Abstract][Full Text] [Related]
4. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886 [TBL] [Abstract][Full Text] [Related]
5. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei. Skedros JG; Sorenson SM; Takano Y; Turner CH Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155 [TBL] [Abstract][Full Text] [Related]
6. The relationship between elastic properties and microstructure of bovine cortical bone. Lipson SF; Katz JL J Biomech; 1984; 17(4):231-40. PubMed ID: 6736060 [TBL] [Abstract][Full Text] [Related]
7. Mechanical implications of collagen fibre orientation in cortical bone of the equine radius. Riggs CM; Vaughan LC; Evans GP; Lanyon LE; Boyde A Anat Embryol (Berl); 1993 Mar; 187(3):239-48. PubMed ID: 8470824 [TBL] [Abstract][Full Text] [Related]
8. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. Choi K; Kuhn JL; Ciarelli MJ; Goldstein SA J Biomech; 1990; 23(11):1103-13. PubMed ID: 2277045 [TBL] [Abstract][Full Text] [Related]
9. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements. Takano Y; Turner CH; Burr DB J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904 [TBL] [Abstract][Full Text] [Related]
10. Roles of collagen cross-links and osteon collagen/lamellar morphotypes in equine third metacarpals in tension and compression tests. Skedros JG; Dayton MR; Cronin JT; Mears CS; Bloebaum RD; Wang X; Bachus KN J Exp Biol; 2024 Jul; 227(14):. PubMed ID: 39045755 [TBL] [Abstract][Full Text] [Related]
11. Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. Sevostianov I; Kachanov M J Biomech; 2000 Jul; 33(7):881-8. PubMed ID: 10831763 [TBL] [Abstract][Full Text] [Related]
12. Collagen fiber orientation pattern, osteon morphology and distribution, and presence of laminar histology do not distinguish torsion from bending in bat and pigeon wing bones. Skedros JG; Doutré MS J Anat; 2019 Jun; 234(6):748-763. PubMed ID: 30924933 [TBL] [Abstract][Full Text] [Related]
13. Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition. Landete-Castillejos T; Currey JD; Ceacero F; García AJ; Gallego L; Gomez S Bone; 2012 Jan; 50(1):245-54. PubMed ID: 22071000 [TBL] [Abstract][Full Text] [Related]
14. Micromechanics modeling of Haversian cortical bone properties. Hogan HA J Biomech; 1992 May; 25(5):549-56. PubMed ID: 1592860 [TBL] [Abstract][Full Text] [Related]
15. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Martínez-Reina J; Domínguez J; García-Aznar JM Biomech Model Mechanobiol; 2011 Jun; 10(3):309-22. PubMed ID: 20596743 [TBL] [Abstract][Full Text] [Related]
16. The effects of remodeling on the elastic properties of bone. Katz JL; Yoon HS; Lipson S; Maharidge R; Meunier A; Christel P Calcif Tissue Int; 1984; 36 Suppl 1():S31-6. PubMed ID: 6430520 [TBL] [Abstract][Full Text] [Related]
17. Influence of osteon area fraction and degree of orientation of HAp crystals on mechanical properties in bovine femur. Yamada S; Tadano S; Fujisaki K; Kodaki Y J Biomech; 2013 Jan; 46(1):31-5. PubMed ID: 23084783 [TBL] [Abstract][Full Text] [Related]
18. Regional distinctions in cortical bone mineral density measured by pQCT can predict alterations in material property at the tibial diaphysis of the Cynomolgus monkey. Nonaka K; Fukuda S; Aoki K; Yoshida T; Ohya K Bone; 2006 Feb; 38(2):265-72. PubMed ID: 16213204 [TBL] [Abstract][Full Text] [Related]
19. Material and compositional properties of selectively demineralized cortical bone. Broz JJ; Simske SJ; Greenberg AR J Biomech; 1995 Nov; 28(11):1357-68. PubMed ID: 8522548 [TBL] [Abstract][Full Text] [Related]
20. Relationship between porosity and mineralization in the Haversian osteon. Black J; Mattson RU Calcif Tissue Int; 1982 Jul; 34(4):332-6. PubMed ID: 6814721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]