BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8408124)

  • 1. Examination of efferent lymph nodes after 2 years of transcortical implantation of poly(L-lactide) containing plugs: a case report.
    Verheyen CC; de Wijn JR; van Blitterswijk CA; Rozing PM; de Groot K
    J Biomed Mater Res; 1993 Aug; 27(8):1115-8. PubMed ID: 8408124
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydroxylapatite/poly(L-lactide) composites: an animal study on push-out strengths and interface histology.
    Verheyen CC; de Wijn JR; van Blitterswijk CA; de Groot K; Rozing PM
    J Biomed Mater Res; 1993 Apr; 27(4):433-44. PubMed ID: 8385142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [In vivo study of degradation of poly-(D,L-) lactide and poly-(L-lactide-co-glycolide) osteosynthesis material].
    Heidemann W; Fischer JH; Koebke J; Bussmann C; Gerlach KL
    Mund Kiefer Gesichtschir; 2003 Sep; 7(5):283-8. PubMed ID: 14551804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of biodegradable ligament augmentation device of poly(L-lactide) in vitro and in vivo.
    Laitinen O; Törmälä P; Taurio R; Skutnabb K; Saarelainen K; Iivonen T; Vainionpää S
    Biomaterials; 1992; 13(14):1012-6. PubMed ID: 1472587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats.
    Majola A; Vainionpää S; Vihtonen K; Mero M; Vasenius J; Törmälä P; Rokkanen P
    Clin Orthop Relat Res; 1991 Jul; (268):260-9. PubMed ID: 2060218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioabsorbable osteosynthesis materials.
    Ewers R; Lieb-Skowron J
    Facial Plast Surg; 1990; 7(3):206-14. PubMed ID: 2135705
    [No Abstract]   [Full Text] [Related]  

  • 7. Biodegradable plate fixation of rabbit femoral shaft osteotomies. A comparative study.
    Hanafusa S; Matsusue Y; Yasunaga T; Yamamuro T; Oka M; Shikinami Y; Ikada Y
    Clin Orthop Relat Res; 1995 Jun; (315):262-71. PubMed ID: 7634680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The in vivo histology of an absorbable suture anchor: a preliminary report.
    Barber FA; Deck MA
    Arthroscopy; 1995 Feb; 11(1):77-81. PubMed ID: 7727016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a dural substitute from synthetic bioabsorbable polymers.
    Yamada K; Miyamoto S; Nagata I; Kikuchi H; Ikada Y; Iwata H; Yamamoto K
    J Neurosurg; 1997 Jun; 86(6):1012-7. PubMed ID: 9171181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do intramedullary rods of self-reinforced poly-L-lactide or poly-DL/L-lactide cause lactic acid acidosis in rabbits?
    Vasenius J; Majola A; Miettinen EL; Törmälä P; Rokkanen P
    Clin Mater; 1992; 10(4):213-8. PubMed ID: 10149984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Studies on in vivo biocompatibility and biodegradation of absorbable material of polylactic acid].
    Ruan DK
    Zhonghua Wai Ke Za Zhi; 1993 Sep; 31(9):568-70. PubMed ID: 8033728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vivo degradation of poly(lactic acid) of different molecular weights.
    Chawla AS; Chang TM
    Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):153-62. PubMed ID: 3841816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of lactic acid on PGE2 production by macrophages and human synovial fibroblasts: a possible explanation for problems associated with the degradation of poly(lactide) implants?
    Dawes E; Rushton N
    Clin Mater; 1994; 17(4):157-63. PubMed ID: 10172486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorbable plugs of self-reinforced poly-L-lactic acid in the internal fixation of rabbit distal femoral osteotomies.
    Pihlajamäki H; Böstman O; Manninen M; Päivärinta U; Törmälä P; Rokkanen P
    Clin Orthop Relat Res; 1994 Jan; (298):277-85. PubMed ID: 8118988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility study of as-polymerized poly(L-lactide) in rats using a cage implant system.
    Bergsma JE; Rozema FR; Bos RR; Boering G; de Bruijn WC; Pennings AJ
    J Biomed Mater Res; 1995 Feb; 29(2):173-9. PubMed ID: 7738063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes.
    Wang Z; Roberge C; Dao LH; Wan Y; Shi G; Rouabhia M; Guidoin R; Zhang Z
    J Biomed Mater Res A; 2004 Jul; 70(1):28-38. PubMed ID: 15174106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resorbable device for fracture fixation: in vivo degradation and mechanical behaviour.
    Fini M; Giannini S; Giardino R; Giavaresi G; Grimaldi M; Aldini NN; Orienti L; Rocca M
    Int J Artif Organs; 1995 Dec; 18(12):772-6. PubMed ID: 8964644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A histomorphological study on self-reinforced polyglycolide (SR-PGA) osteosynthesis implants coated with slowly absorbable polymers.
    Vasenius J; Vainionpää S; Vihtonen K; Mero M; Mäkelä A; Törmälä P; Rokkanen P
    J Biomed Mater Res; 1990 Dec; 24(12):1615-35. PubMed ID: 2177471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable internal fixation.
    Strycker ML
    J Foot Ankle Surg; 1995; 34(1):82-8. PubMed ID: 7780399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA).
    Hollinger JO
    J Biomed Mater Res; 1983 Jan; 17(1):71-82. PubMed ID: 6298242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.