These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal. Corvera S; Chawla A; Chakrabarti R; Joly M; Buxton J; Czech MP J Cell Biol; 1994 Aug; 126(4):979-89. PubMed ID: 7519625 [TBL] [Abstract][Full Text] [Related]
3. Insulin-sensitive targeting of the GLUT4 glucose transporter in L6 myoblasts is conferred by its COOH-terminal cytoplasmic tail. Haney PM; Levy MA; Strube MS; Mueckler M J Cell Biol; 1995 May; 129(3):641-58. PubMed ID: 7730401 [TBL] [Abstract][Full Text] [Related]
4. Discrete structural domains determine differential endoplasmic reticulum to Golgi transit times for glucose transporter isoforms. Hresko RC; Murata H; Marshall BA; Mueckler M J Biol Chem; 1994 Dec; 269(51):32110-9. PubMed ID: 7798206 [TBL] [Abstract][Full Text] [Related]
5. Identification of the carboxy terminus as important for the isoform-specific subcellular targeting of glucose transporter proteins. Verhey KJ; Hausdorff SF; Birnbaum MJ J Cell Biol; 1993 Oct; 123(1):137-47. PubMed ID: 7691826 [TBL] [Abstract][Full Text] [Related]
6. Possible domains responsible for intracellular targeting and insulin-dependent translocation of glucose transporter type 4. Ishii K; Hayashi H; Todaka M; Kamohara S; Kanai F; Jinnouchi H; Wang L; Ebina Y Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):813-23. PubMed ID: 7543750 [TBL] [Abstract][Full Text] [Related]
7. Domains responsible for the differential targeting of glucose transporter isoforms. Asano T; Takata K; Katagiri H; Tsukuda K; Lin JL; Ishihara H; Inukai K; Hirano H; Yazaki Y; Oka Y J Biol Chem; 1992 Sep; 267(27):19636-41. PubMed ID: 1527083 [TBL] [Abstract][Full Text] [Related]
8. Domains that confer intracellular sequestration of the Glut4 glucose transporter in Xenopus oocytes. Marshall BA; Murata H; Hresko RC; Mueckler M J Biol Chem; 1993 Dec; 268(35):26193-9. PubMed ID: 8253739 [TBL] [Abstract][Full Text] [Related]
9. Distinct signals in the GLUT4 glucose transporter for internalization and for targeting to an insulin-responsive compartment. Verhey KJ; Yeh JI; Birnbaum MJ J Cell Biol; 1995 Sep; 130(5):1071-9. PubMed ID: 7657693 [TBL] [Abstract][Full Text] [Related]
10. Subcellular distribution and activity of glucose transporter isoforms GLUT1 and GLUT4 transiently expressed in COS-7 cells. Schürmann A; Monden I; Joost HG; Keller K Biochim Biophys Acta; 1992 Jul; 1131(3):245-52. PubMed ID: 1627641 [TBL] [Abstract][Full Text] [Related]
11. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Giorgino F; de Robertis O; Laviola L; Montrone C; Perrini S; McCowen KC; Smith RJ Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1125-30. PubMed ID: 10655495 [TBL] [Abstract][Full Text] [Related]
12. A Leu-Leu sequence is essential for COOH-terminal targeting signal of GLUT4 glucose transporter in fibroblasts. Verhey KJ; Birnbaum MJ J Biol Chem; 1994 Jan; 269(4):2353-6. PubMed ID: 8300557 [TBL] [Abstract][Full Text] [Related]
13. The amino terminus of GLUT4 functions as an internalization motif but not an intracellular retention signal when substituted for the transferrin receptor cytoplasmic domain. Garippa RJ; Judge TW; James DE; McGraw TE J Cell Biol; 1994 Mar; 124(5):705-15. PubMed ID: 8120093 [TBL] [Abstract][Full Text] [Related]
14. C-terminal mutations that alter the turnover number for 3-O-methylglucose transport by GLUT1 and GLUT4. Dauterive R; Laroux S; Bunn RC; Chaisson A; Sanson T; Reed BC J Biol Chem; 1996 May; 271(19):11414-21. PubMed ID: 8626697 [TBL] [Abstract][Full Text] [Related]
15. Subcellular trafficking kinetics of GLU4 mutated at the N- and C-terminal. Araki S; Yang J; Hashiramoto M; Tamori Y; Kasuga M; Holman GD Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):153-9. PubMed ID: 8670101 [TBL] [Abstract][Full Text] [Related]
16. A synthetic peptide corresponding to the GLUT4 C-terminal cytoplasmic domain causes insulin-like glucose transport stimulation and GLUT4 recruitment in rat adipocytes. Lee W; Jung CY J Biol Chem; 1997 Aug; 272(34):21427-31. PubMed ID: 9261158 [TBL] [Abstract][Full Text] [Related]
17. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Zottola RJ; Cloherty EK; Coderre PE; Hansen A; Hebert DN; Carruthers A Biochemistry; 1995 Aug; 34(30):9734-47. PubMed ID: 7626644 [TBL] [Abstract][Full Text] [Related]
18. GLUT4 phosphorylation and inhibition of glucose transport by dibutyryl cAMP. Piper RC; James DE; Slot JW; Puri C; Lawrence JC J Biol Chem; 1993 Aug; 268(22):16557-63. PubMed ID: 8393869 [TBL] [Abstract][Full Text] [Related]
19. Intracellular targeting of the insulin-regulatable glucose transporter (GLUT4) is isoform specific and independent of cell type. Haney PM; Slot JW; Piper RC; James DE; Mueckler M J Cell Biol; 1991 Aug; 114(4):689-99. PubMed ID: 1651337 [TBL] [Abstract][Full Text] [Related]
20. Insulin unmasks a COOH-terminal Glut4 epitope and increases glucose transport across T-tubules in skeletal muscle. Wang W; Hansen PA; Marshall BA; Holloszy JO; Mueckler M J Cell Biol; 1996 Oct; 135(2):415-30. PubMed ID: 8896598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]