These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8408701)

  • 1. Bacteriological evaluation of a down-draught necropsy table ventilation system.
    al-Wali W; Kibbler CC; McLaughlin JE
    J Clin Pathol; 1993 Aug; 46(8):746-9. PubMed ID: 8408701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further bacteriological evaluation of the TOUL mobile system delivering ultra-clean air over surgical patients and instruments.
    Thore M; Burman LG
    J Hosp Infect; 2006 Jun; 63(2):185-92. PubMed ID: 16621144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow and containment characteristics of a sash-less, variable-height inclined air-curtain fume hood.
    Huang RF; Chen JK; Hung WL
    Ann Occup Hyg; 2013 Aug; 57(7):934-52. PubMed ID: 23519947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three years of experience with a dissection table ventilation system.
    Martin WD; Nemitz JW; Hendley A; Fisk RM; Wells JP
    Clin Anat; 1995; 8(4):297-302. PubMed ID: 7552969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriological evaluation of a mobile laminar cross-flow unit for surgery, under laboratory circumstances.
    van der Waaij D; Wiegersma N; Dankert J
    J Hyg (Lond); 1976 Feb; 76(1):1-10. PubMed ID: 1107410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air, water, and surface bacterial contamination in a university-hospital autopsy room.
    Maujean G; Malicier D; Fanton L
    J Forensic Sci; 2012 Mar; 57(2):381-5. PubMed ID: 22309163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone-dust in autopsies: reduction of spreading.
    Kernbach-Wighton G; Kuhlencord A; Rossbach K; Fischer G
    Forensic Sci Int; 1996 Dec; 83(2):95-103. PubMed ID: 9022272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-use surgical clothing system for reduction of airborne bacteria in the operating room.
    Tammelin A; Ljungqvist B; Reinmüller B
    J Hosp Infect; 2013 Jul; 84(3):245-7. PubMed ID: 23694760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of different-sized laminar air flow versus no laminar air flow on bacterial counts in the operating room during orthopedic surgery.
    Diab-Elschahawi M; Berger J; Blacky A; Kimberger O; Oguz R; Kuelpmann R; Kramer A; Assadian O
    Am J Infect Control; 2011 Sep; 39(7):e25-9. PubMed ID: 21496953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow.
    Alsved M; Civilis A; Ekolind P; Tammelin A; Andersson AE; Jakobsson J; Svensson T; Ramstorp M; Sadrizadeh S; Larsson PA; Bohgard M; Šantl-Temkiv T; Löndahl J
    J Hosp Infect; 2018 Feb; 98(2):181-190. PubMed ID: 29074054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indoor air climate and microbiological airborne: contamination in various hospital areas.
    Berardi BM; Leoni E
    Zentralbl Hyg Umweltmed; 1993 Jul; 194(4):405-18. PubMed ID: 8397689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Ventilation method plan in daily operations--a practical study].
    Bischoff WE; Sander U; Sander J
    Zentralbl Hyg Umweltmed; 1994 Apr; 195(4):306-18. PubMed ID: 8011060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of mobile laminar airflow units on airborne bacterial contamination during neurosurgical procedures.
    von Vogelsang AC; Förander P; Arvidsson M; Löwenhielm P
    J Hosp Infect; 2018 Jul; 99(3):271-278. PubMed ID: 29580895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between surface and air counts of particles carrying aerobic bacteria in operating rooms with turbulent ventilation: an experimental study.
    Friberg B; Friberg S; Burman LG
    J Hosp Infect; 1999 May; 42(1):61-8. PubMed ID: 10363212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing microbial colonies in the air of operating rooms.
    Fu Shaw L; Chen IH; Chen CS; Wu HH; Lai LS; Chen YY; Wang F
    BMC Infect Dis; 2018 Jan; 18(1):4. PubMed ID: 29291707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of blow/fill/seal equipment under controlled airborne microbial challenges.
    Sinclair CS; Tallentire A
    PDA J Pharm Sci Technol; 1995; 49(6):294-9. PubMed ID: 8581461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sterilization efficacy of ultraviolet irradiation on microbial aerosols under dynamic airflow by experimental air conditioning systems.
    Nakamura H
    Bull Tokyo Med Dent Univ; 1987 Jun; 34(2):25-40. PubMed ID: 3127068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of down-draught ventilation systems in the pathology laboratory and post mortem room.
    Kelly JD; McLaughlin JE
    Health Estate J; 1990 May; 44(4):7-10. PubMed ID: 10104956
    [No Abstract]   [Full Text] [Related]  

  • 19. [Sawdust in autopsies: production, spreading, and contamination].
    Kernbach-Wighton G; Kuhlencord A; Saternus KS
    Pathologe; 1998 Sep; 19(5):355-60. PubMed ID: 9816590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans.
    Luksamijarulkul P; Arunchai N; Luksamijarulkul S; Kaewboonchoo O
    Southeast Asian J Trop Med Public Health; 2005 Jul; 36(4):1032-8. PubMed ID: 16295565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.