These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8409324)

  • 41. Mutant oligonucleotide extension amplification: a nonlabeling polymerase-chain-reaction-based assay for the detection of point mutations.
    Efremov DG; Dimovski AJ; Janković L; Efremov GD
    Acta Haematol; 1991; 85(2):66-70. PubMed ID: 2024557
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid DNA chemical ligation for amplification of RNA and DNA signal.
    Abe H; Kondo Y; Jinmei H; Abe N; Furukawa K; Uchiyama A; Tsuneda S; Aikawa K; Matsumoto I; Ito Y
    Bioconjug Chem; 2008 Jan; 19(1):327-33. PubMed ID: 17990846
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amplification of closed circular DNA in vitro.
    Chen Z; Ruffner DE
    Nucleic Acids Res; 1998 Dec; 26(23):1126-7. PubMed ID: 9988636
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amplification of closed circular DNA in vitro.
    Chen Z; Ruffner DE
    Nucleic Acids Res; 1998 Feb; 26(4):1126-7. PubMed ID: 9461478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of ligase chain reaction products via matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry.
    Jurinke C; van den Boom D; Jacob A; Tang K; Wörl R; Köster H
    Anal Biochem; 1996 Jun; 237(2):174-81. PubMed ID: 8660562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fidelity of enzymatic ligation for DNA computing.
    Faulhammer D; Lipton RJ; Landweber LF
    J Comput Biol; 2000; 7(6):839-48. PubMed ID: 11382365
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Truncated amplification: a method for high-fidelity template-driven nucleic acid amplification.
    Liu Q; Swiderski P; Sommer SS
    Biotechniques; 2002 Jul; 33(1):129-32, 134-6, 138. PubMed ID: 12139237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid, isothermal DNA self-replication induced by a destabilizing lesion.
    Kausar A; Mitran CJ; Li Y; Gibbs-Davis JM
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10577-81. PubMed ID: 23922255
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fluorescently cationic conjugated polymer as an indicator of ligase chain reaction for sensitive and homogeneous detection of single nucleotide polymorphism.
    Cheng Y; Du Q; Wang L; Jia H; Li Z
    Anal Chem; 2012 Apr; 84(8):3739-44. PubMed ID: 22424155
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real-time fluorescence ligase chain reaction for sensitive detection of single nucleotide polymorphism based on fluorescence resonance energy transfer.
    Sun Y; Lu X; Su F; Wang L; Liu C; Duan X; Li Z
    Biosens Bioelectron; 2015 Dec; 74():705-10. PubMed ID: 26210467
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA-templated single-base mutation detection based on T4 DNA ligase and reverse molecular beacon.
    Tang H; Yang X; Wang K; Tan W; Li H; He L; Liu B
    Talanta; 2008 Jun; 75(5):1388-93. PubMed ID: 18585229
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimised ligation of oligonucleotides by thermal ligases: comparison of Thermus scotoductus and Rhodothermus marinus DNA ligases to other thermophilic ligases.
    Housby JN; Thorbjarnardóttir SH; Jónsson ZO; Southern EM
    Nucleic Acids Res; 2000 Feb; 28(3):E10. PubMed ID: 10637340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Joining of short DNA oligonucleotides with base pair mismatches by T4 DNA ligase.
    Cherepanov A; Yildirim E; de Vries S
    J Biochem; 2001 Jan; 129(1):61-8. PubMed ID: 11134958
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multivariate analysis of factors influencing repeat expansion detection.
    Zander C; Thelaus J; Lindblad K; Karlsson M; Sjöberg K; Schalling M
    Genome Res; 1998 Oct; 8(10):1085-94. PubMed ID: 9799795
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP.
    Cho EJ; Yang L; Levy M; Ellington AD
    J Am Chem Soc; 2005 Feb; 127(7):2022-3. PubMed ID: 15713061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-nucleotide sequence discrimination in situ using padlock probes.
    Nilsson M; Landegren U; Antson DO
    Curr Protoc Hum Genet; 2002 Nov; Chapter 4():Unit 4.11. PubMed ID: 18428329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of Chlamydia trachomatis by ligase chain reaction compared with polymerase chain reaction and cell culture in urogenital specimens.
    de Barbeyrac B; Rodriguez P; Dutilh B; Le Roux P; Bébéar C
    Genitourin Med; 1995 Dec; 71(6):382-6. PubMed ID: 8566978
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Comparison of the DNA-GEN Probe PACE 2 method and the LCR method for the detection of Chlamydia trachomatis in the female genital tract].
    Binder T; Hrusková H; Drazdáková M; Kuklová I
    Ceska Gynekol; 1997 Jun; 62(3):131-3. PubMed ID: 9424251
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.
    Saiki RK; Gelfand DH; Stoffel S; Scharf SJ; Higuchi R; Horn GT; Mullis KB; Erlich HA
    Science; 1988 Jan; 239(4839):487-91. PubMed ID: 2448875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of polymerase chain reaction and ligase chain reaction for the detection of Chlamydia trachomatis.
    Davies PO; Ridgway GL
    Int J STD AIDS; 1997 Dec; 8(12):731-8. PubMed ID: 9433945
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.