These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 8409626)
1. The stochastic general epidemic model revisited and a generalization. Billard L; Zhao Z IMA J Math Appl Med Biol; 1993; 10(1):67-75. PubMed ID: 8409626 [TBL] [Abstract][Full Text] [Related]
2. On the formulation of discrete-time epidemic models. Lefevre C; Picard P Math Biosci; 1989 Jul; 95(1):27-35. PubMed ID: 2520175 [TBL] [Abstract][Full Text] [Related]
3. Three-stage stochastic epidemic model: an application to AIDS. Billard L; Zhao Z Math Biosci; 1991 Dec; 107(2):431-49. PubMed ID: 1806127 [TBL] [Abstract][Full Text] [Related]
4. Models for the simple epidemic. West RW; Thompson JR Math Biosci; 1997 Apr; 141(1):29-39. PubMed ID: 9077078 [TBL] [Abstract][Full Text] [Related]
5. Large-sample analysis for a stochastic epidemic model and its parameter estimators. Fierro R J Math Biol; 1996; 34(8):843-56. PubMed ID: 8858853 [TBL] [Abstract][Full Text] [Related]
6. Periodic solutions: a robust numerical method for an S-I-R model of epidemics. Milner FA; Pugliese A J Math Biol; 1999 Dec; 39(6):471-92. PubMed ID: 10672508 [TBL] [Abstract][Full Text] [Related]
7. Dynamic population epidemic models. Ball FG Math Biosci; 1991 Dec; 107(2):299-324. PubMed ID: 1806120 [TBL] [Abstract][Full Text] [Related]
8. An algorithmic synthesis of the deterministic and stochastic paradigms via computer intensive methods. Mode CJ; Sleeman CK Math Biosci; 2002; 180():115-26. PubMed ID: 12387919 [TBL] [Abstract][Full Text] [Related]
9. On the simultaneous distribution of size and costs of an epidemic in a closed multigroup population. Svensson A Math Biosci; 1995 Jun; 127(2):167-80. PubMed ID: 7795317 [TBL] [Abstract][Full Text] [Related]
10. A discrete-time epidemic model with classes of infectives and susceptibles. Cooke KL Theor Popul Biol; 1975 Apr; 7(2):175-96. PubMed ID: 1145502 [No Abstract] [Full Text] [Related]
11. A two-state recurrent stochastic model with time-dependent transition rates. Kenley SS; Chiang CL; Brand RJ Math Biosci; 1992 Oct; 111(2):249-59. PubMed ID: 1515746 [TBL] [Abstract][Full Text] [Related]
12. Computational methods for Markov series with large state spaces, with application to AIDS modeling. Yakowitz S Math Biosci; 1995 May; 127(1):99-121. PubMed ID: 7734859 [TBL] [Abstract][Full Text] [Related]
13. Carrier-borne epidemic models incorporating population mobility. Clancy D Math Biosci; 1996 Mar; 132(2):185-204. PubMed ID: 8714413 [TBL] [Abstract][Full Text] [Related]
14. Epidemics in a population with social structures. Andersson H Math Biosci; 1997 Mar; 140(2):79-84. PubMed ID: 9046769 [TBL] [Abstract][Full Text] [Related]
15. The shape of the size distribution of an epidemic in a finite population. Ball F; Nåsell I Math Biosci; 1994 Oct; 123(2):167-81. PubMed ID: 7827418 [TBL] [Abstract][Full Text] [Related]
16. Optimal intervention for epidemic models with general infection and removal rate functions. Clancy D J Math Biol; 1999 Oct; 39(4):309-31. PubMed ID: 10550576 [TBL] [Abstract][Full Text] [Related]
17. A stochastic model for the development of an AIDS epidemic in a heterosexual population. Mode CJ Math Biosci; 1991 Dec; 107(2):491-520. PubMed ID: 1806129 [TBL] [Abstract][Full Text] [Related]
18. Network epidemic models with two levels of mixing. Ball F; Neal P Math Biosci; 2008 Mar; 212(1):69-87. PubMed ID: 18280521 [TBL] [Abstract][Full Text] [Related]
19. Novel bivariate moment-closure approximations. Krishnarajah I; Marion G; Gibson G Math Biosci; 2007 Aug; 208(2):621-43. PubMed ID: 17300816 [TBL] [Abstract][Full Text] [Related]
20. On the time to reach a critical number of infections in epidemic models with infective and susceptible immigrants. Almaraz E; Gómez-Corral A; Rodríguez-Bernal MT Biosystems; 2016 Jun; 144():68-77. PubMed ID: 27068519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]