These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 8409700)
21. Melatonin protection against lethal myocyte injury induced by doxorubicin as reflected by effects on mitochondrial membrane potential. Xu M; Ashraf M J Mol Cell Cardiol; 2002 Jan; 34(1):75-9. PubMed ID: 11812166 [TBL] [Abstract][Full Text] [Related]
22. Protective effect of Nardostachys jatamansi on oxidative injury and cellular abnormalities during doxorubicin-induced cardiac damage in rats. Subashini R; Yogeeta S; Gnanapragasam A; Devaki T J Pharm Pharmacol; 2006 Feb; 58(2):257-62. PubMed ID: 16451755 [TBL] [Abstract][Full Text] [Related]
23. Experimental study of dexrazoxane-anthracycline combinations using the model of isolated perfused rat heart. Plandé J; Platel D; Tariosse L; Robert J Toxicol Lett; 2006 Feb; 161(1):37-42. PubMed ID: 16129573 [TBL] [Abstract][Full Text] [Related]
24. Reduction of oxygen uptake in vitro as an index of cardiac toxicity induced by new anthracyclines. Cini-Neri G; Neri B Anticancer Res; 1986; 6(2):195-7. PubMed ID: 3458425 [TBL] [Abstract][Full Text] [Related]
25. The protective effect of cardiac gene transfer of CuZn-sod in comparison with the cardioprotector monohydroxyethylrutoside against doxorubicin-induced cardiotoxicity in cultured cells. Abou El Hassan MA; Heijn M; Rabelink MJ; van der Vijgh WJ; Bast A; Hoeben RC Cancer Gene Ther; 2003 Apr; 10(4):270-7. PubMed ID: 12679799 [TBL] [Abstract][Full Text] [Related]
26. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Venkatesan N Br J Pharmacol; 1998 Jun; 124(3):425-7. PubMed ID: 9647462 [TBL] [Abstract][Full Text] [Related]
27. Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. Link G; Saada A; Pinson A; Konijn AM; Hershko C J Lab Clin Med; 1998 May; 131(5):466-74. PubMed ID: 9605112 [TBL] [Abstract][Full Text] [Related]
28. New iron chelators in anthracycline-induced cardiotoxicity. Kaiserová H; Simunek T; Sterba M; den Hartog GJ; Schröterová L; Popelová O; Gersl V; Kvasnicková E; Bast A Cardiovasc Toxicol; 2007; 7(2):145-50. PubMed ID: 17652820 [TBL] [Abstract][Full Text] [Related]
29. Protectors against doxorubicin-induced cardiotoxicity: flavonoids. Bast A; Kaiserová H; den Hartog GJ; Haenen GR; van der Vijgh WJ Cell Biol Toxicol; 2007 Jan; 23(1):39-47. PubMed ID: 17063376 [TBL] [Abstract][Full Text] [Related]
30. Silymarin prevents adriamycin-induced cardiotoxicity and nephrotoxicity in rats. El-Shitany NA; El-Haggar S; El-desoky K Food Chem Toxicol; 2008 Jul; 46(7):2422-8. PubMed ID: 18487002 [TBL] [Abstract][Full Text] [Related]
31. The interval-force relationship: a technique for evaluating the cardiac toxicity of anthracycline analogs. Breed JG; Zimmerman AN; Meyler FL; Pinedo HM Cancer Treat Rep; 1979 May; 63(5):869-73. PubMed ID: 455328 [TBL] [Abstract][Full Text] [Related]
32. Amifostine protects against early but not late toxic effects of doxorubicin in infant rats. Jahnukainen K; Jahnukainen T; Salmi TT; Svechnikov K; Eksborg S; Söder O Cancer Res; 2001 Sep; 61(17):6423-7. PubMed ID: 11522636 [TBL] [Abstract][Full Text] [Related]
33. Effect of anthracycline drugs on the element content of cultured embryonic rat cardiomyocytes. Djaldetti M; Gilgal R; Sheinberg A; Klein B; Zahavi I Arzneimittelforschung; 1991 Nov; 41(11):1173-5. PubMed ID: 1810264 [TBL] [Abstract][Full Text] [Related]
34. Modification of iron uptake and lipid peroxidation by hypoxia, ascorbic acid, and alpha-tocopherol in iron-loaded rat myocardial cell cultures. Hershko C; Link G; Pinson A J Lab Clin Med; 1987 Sep; 110(3):355-61. PubMed ID: 3611956 [TBL] [Abstract][Full Text] [Related]
35. Ghrelin prevents doxorubicin-induced cardiotoxicity through TNF-alpha/NF-kappaB pathways and mitochondrial protective mechanisms. Xu Z; Lin S; Wu W; Tan H; Wang Z; Cheng C; Lu L; Zhang X Toxicology; 2008 May; 247(2-3):133-8. PubMed ID: 18400355 [TBL] [Abstract][Full Text] [Related]
36. Ability of the orally effective iron chelators dimethyl- and diethyl-hydroxypyrid-4-one and of deferoxamine to restore sarcolemmal thiolic enzyme activity in iron-loaded heart cells. Link G; Pinson A; Hershko C Blood; 1994 May; 83(9):2692-7. PubMed ID: 8167347 [TBL] [Abstract][Full Text] [Related]
37. Cardioprotective effect of alpha-tocopherol, ascorbate, deferoxamine, and deferiprone: mitochondrial function in cultured, iron-loaded heart cells. Link G; Konijn AM; Hershko C J Lab Clin Med; 1999 Feb; 133(2):179-88. PubMed ID: 9989770 [TBL] [Abstract][Full Text] [Related]
38. Iron-load increases the susceptibility of rat hearts to oxygen reperfusion damage. Protection by the antioxidant (+)-cyanidanol-3 and deferoxamine. van der Kraaij AM; Mostert LJ; van Eijk HG; Koster JF Circulation; 1988 Aug; 78(2):442-9. PubMed ID: 3396180 [TBL] [Abstract][Full Text] [Related]
39. Prevention of anthracycline cardiotoxicity by iron chelation. Hershko C; Pinson A; Link G Acta Haematol; 1996; 95(1):87-92. PubMed ID: 8604592 [TBL] [Abstract][Full Text] [Related]
40. Lipid peroxidation in hepatocyte cell cultures: modulation by free radical scavengers and iron. Innes GK; Fuller BJ; Hobbs KE In Vitro Cell Dev Biol; 1988 Feb; 24(2):126-32. PubMed ID: 3125142 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]