These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Escherichia coli mutants resistant to uncouplers of oxidative phosphorylation. Jones MR; Beechey RB J Gen Microbiol; 1987 Oct; 133(10):2759-66. PubMed ID: 3329677 [TBL] [Abstract][Full Text] [Related]
26. Isolation of Escherichia coli mutants defective in uptake of molybdate. Hemschemeier S; Grund M; Keuntje B; Eichenlaub R J Bacteriol; 1991 Oct; 173(20):6499-506. PubMed ID: 1655715 [TBL] [Abstract][Full Text] [Related]
27. Extrusion of sodium ions energized by respiration and glycolysis in Escherichia coli. Tsuchiya T; Takeda K J Biochem; 1979 Jul; 86(1):225-30. PubMed ID: 39066 [TBL] [Abstract][Full Text] [Related]
28. Energetics underlying the process of long-chain fatty acid transport. Azizan A; Sherin D; DiRusso CC; Black PN Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825 [TBL] [Abstract][Full Text] [Related]
29. Energy requirement for pullulanase secretion by the main terminal branch of the general secretory pathway. Possot OM; Letellier L; Pugsley AP Mol Microbiol; 1997 May; 24(3):457-64. PubMed ID: 9179840 [TBL] [Abstract][Full Text] [Related]
30. Direct determination of the properties of peptide transport systems in Escherichia coli, using a fluorescent-labeling procedure. Payne JW; Bell G J Bacteriol; 1979 Jan; 137(1):447-55. PubMed ID: 368023 [TBL] [Abstract][Full Text] [Related]
31. Allantoin transport in Saccharomyces cerevisiae. Sumrada R; Cooper TG J Bacteriol; 1977 Sep; 131(3):839-47. PubMed ID: 19421 [TBL] [Abstract][Full Text] [Related]
32. Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13. Shukor MY; Rahman MF; Shamaan NA; Syed MA J Basic Microbiol; 2009 Sep; 49 Suppl 1():S43-54. PubMed ID: 19455513 [TBL] [Abstract][Full Text] [Related]
33. Entry of methotrexate into Streptococcus pneumoniae: a study on a wild-type strain and a methotrexate resistant mutant. Trombe MC J Gen Microbiol; 1985 Jun; 131(6):1273-8. PubMed ID: 3876407 [TBL] [Abstract][Full Text] [Related]
34. Transport of molybdate in the cyanobacterium Anabaena variabilis ATCC 29413. Thiel T; Pratte B; Zahalak M Arch Microbiol; 2002 Dec; 179(1):50-6. PubMed ID: 12471504 [TBL] [Abstract][Full Text] [Related]
35. Accumulation of rifampicin by Escherichia coli and Staphylococcus aureus. Williams KJ; Piddock LJ J Antimicrob Chemother; 1998 Nov; 42(5):597-603. PubMed ID: 9848443 [TBL] [Abstract][Full Text] [Related]
36. Characterization of the specific pyruvate transport system in Escherichia coli K-12. Lang VJ; Leystra-Lantz C; Cook RA J Bacteriol; 1987 Jan; 169(1):380-5. PubMed ID: 3025181 [TBL] [Abstract][Full Text] [Related]
37. Characterization and transcriptional regulation of the modABCD genes for molybdenum transport in Escherichia coli. Miyake H; Yabu H; Satoh T; Yamamoto I Nucleic Acids Symp Ser; 1995; (34):91-2. PubMed ID: 8841567 [TBL] [Abstract][Full Text] [Related]
38. Molybdate binding by ModA, the periplasmic component of the Escherichia coli mod molybdate transport system. Imperial J; Hadi M; Amy NK Biochim Biophys Acta; 1998 Mar; 1370(2):337-46. PubMed ID: 9545596 [TBL] [Abstract][Full Text] [Related]
39. Molybdate transport and its effect on nitrogen utilization in the cyanobacterium Anabaena variabilis ATCC 29413. Zahalak M; Pratte B; Werth KJ; Thiel T Mol Microbiol; 2004 Jan; 51(2):539-49. PubMed ID: 14756792 [TBL] [Abstract][Full Text] [Related]
40. Effect of arsenate on inorganic phosphate transport in Escherichia coli. Willsky GR; Malamy MH J Bacteriol; 1980 Oct; 144(1):366-74. PubMed ID: 6998959 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]