BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8410052)

  • 1. Immunohistochemical studies with antibodies to neurofilament proteins on axonal damage in experimental focal lesions in rat.
    Meller D; Bellander BM; Schmidt-Kastner R; Ingvar M
    J Neurol Sci; 1993 Jul; 117(1-2):164-74. PubMed ID: 8410052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage of substantia nigra pars reticulata during pilocarpine-induced status epilepticus in the rat: immunohistochemical study of neurons, astrocytes and serum-protein extravasation.
    Schmidt-Kastner R; Heim C; Sontag KH
    Exp Brain Res; 1991; 86(1):125-40. PubMed ID: 1756784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of stab injury in the rat cerebral cortex on temporal pattern of expression of neuronal cytoskeletal proteins: an immunohistochemical study.
    Lavrnja I; Savic D; Parabucki A; Dacic S; Laketa D; Pekovic S; Stojiljkovic M
    Acta Histochem; 2015 Mar; 117(2):155-62. PubMed ID: 25592752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of immunoreactivity for glial fibrillary acidic protein (GFAP) in astrocytes as a marker for profound tissue damage in substantia nigra and basal cortical areas after status epilepticus induced by pilocarpine in rat.
    Schmidt-Kastner R; Ingvar M
    Glia; 1994 Nov; 12(3):165-72. PubMed ID: 7851985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nogo-A is associated with secondary degeneration of substantia nigra in hypertensive rats with focal cortical infarction.
    Wang F; Xing S; He M; Hou Q; Chen S; Zou X; Pei Z; Zeng J
    Brain Res; 2012 Aug; 1469():153-63. PubMed ID: 22771857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neuronal cytoskeleton is at risk after mild and moderate brain injury.
    Saatman KE; Graham DI; McIntosh TK
    J Neurotrauma; 1998 Dec; 15(12):1047-58. PubMed ID: 9872461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury in humans.
    Grady MS; McLaughlin MR; Christman CW; Valadka AB; Fligner CL; Povlishock JT
    J Neuropathol Exp Neurol; 1993 Mar; 52(2):143-52. PubMed ID: 8440996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ischemic axonal injury and its recovery after focal cerebral ischemia].
    Taguohi J; Yamada K; Hayakawa T; Katoka K; Komura E; Nakao K; Matsumoto K; Mogami H; Kanai N
    No To Shinkei; 1989 Aug; 41(8):813-8. PubMed ID: 2679826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histological markers of neuronal, axonal and astrocytic changes after lateral rigid impact traumatic brain injury.
    Dunn-Meynell AA; Levin BE
    Brain Res; 1997 Jun; 761(1):25-41. PubMed ID: 9247063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitatory neurotransmission within substantia nigra pars reticulata regulates threshold for seizures produced by pilocarpine in rats: effects of intranigral 2-amino-7-phosphonoheptanoate and N-methyl-D-aspartate.
    Turski L; Cavalheiro EA; Turski WA; Meldrum BS
    Neuroscience; 1986 May; 18(1):61-77. PubMed ID: 3016600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of forebrain diffuse axonal injury following inertial closed head injury in miniature swine.
    Ross DT; Meaney DF; Sabol MK; Smith DH; Gennarelli TA
    Exp Neurol; 1994 Apr; 126(2):291-9. PubMed ID: 7925827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal injury caused by focal cerebral ischemia in the rat.
    Yam PS; Dewar D; McCulloch J
    J Neurotrauma; 1998 Jun; 15(6):441-50. PubMed ID: 9624629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moderate posttraumatic hypothermia decreases early calpain-mediated proteolysis and concomitant cytoskeletal compromise in traumatic axonal injury.
    Büki A; Koizumi H; Povlishock JT
    Exp Neurol; 1999 Sep; 159(1):319-28. PubMed ID: 10486200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in neurofilaments associated with reactive brain changes and axonal sprouting following acute physical injury to the rat neocortex.
    King CE; Canty AJ; Vickers JC
    Neuropathol Appl Neurobiol; 2001 Apr; 27(2):115-26. PubMed ID: 11437992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemistry and serum values of S-100B, glial fibrillary acidic protein, and hyperphosphorylated neurofilaments in brain injuries.
    Vajtr D; Benada O; Linzer P; Sámal F; Springer D; Strejc P; Beran M; Průša R; Zima T
    Soud Lek; 2012 Jan; 57(1):7-12. PubMed ID: 22724589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurofilament expression in the rat brain after cerebral infarction: effect of age.
    Schroeder E; Vogelgesang S; Popa-Wagner A; Kessler C
    Neurobiol Aging; 2003; 24(1):135-45. PubMed ID: 12493559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early metabolic responses to lithium/pilocarpine-induced status epilepticus in rat brain.
    Imran I; Hillert MH; Klein J
    J Neurochem; 2015 Dec; 135(5):1007-18. PubMed ID: 26365376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact acceleration injury in the rat: evidence for focal axolemmal change and related neurofilament sidearm alteration.
    Povlishock JT; Marmarou A; McIntosh T; Trojanowski JQ; Moroi J
    J Neuropathol Exp Neurol; 1997 Apr; 56(4):347-59. PubMed ID: 9100665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury.
    Büki A; Siman R; Trojanowski JQ; Povlishock JT
    J Neuropathol Exp Neurol; 1999 Apr; 58(4):365-75. PubMed ID: 10218632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural studies of diffuse axonal injury in humans.
    Christman CW; Grady MS; Walker SA; Holloway KL; Povlishock JT
    J Neurotrauma; 1994 Apr; 11(2):173-86. PubMed ID: 7523685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.