These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 8410159)

  • 1. Inward rectification and its effects on the repetitive firing properties of bulbospinal neurons located in the ventral part of the nucleus tractus solitarius.
    Dekin MS
    J Neurophysiol; 1993 Aug; 70(2):590-601. PubMed ID: 8410159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological properties of neurons within the nucleus ambiguus of adult guinea pigs.
    Johnson SM; Getting PA
    J Neurophysiol; 1991 Sep; 66(3):744-61. PubMed ID: 1753285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. II. Ionic basis for repetitive firing patterns.
    Dekin MS; Getting PA
    J Neurophysiol; 1987 Jul; 58(1):215-29. PubMed ID: 2441002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. I. Identification of neuronal types and repetitive firing properties.
    Dekin MS; Getting PA; Johnson SM
    J Neurophysiol; 1987 Jul; 58(1):195-214. PubMed ID: 3612224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperpolarization-activated currents in neurons of the rat basolateral amygdala.
    Womble MD; Moises HC
    J Neurophysiol; 1993 Nov; 70(5):2056-65. PubMed ID: 7507523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperpolarization-activated currents, IH and IKIR, in rat dorsal motor nucleus of the vagus neurons in vitro.
    Travagli RA; Gillis RA
    J Neurophysiol; 1994 Apr; 71(4):1308-17. PubMed ID: 8035216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-cell analysis of ionic currents underlying the firing pattern of neurons in the gustatory zone of the nucleus tractus solitarii.
    Tell F; Bradley RM
    J Neurophysiol; 1994 Feb; 71(2):479-92. PubMed ID: 7513751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ionic current model for medullary respiratory neurons.
    Athanasiades A; Clark JW; Ghorbel F; Bidani A
    J Comput Neurosci; 2000; 9(3):237-57. PubMed ID: 11139041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the nature of anomalous rectification in thalamocortical neurones of the cat ventrobasal thalamus in vitro.
    Williams SR; Turner JP; Hughes SW; Crunelli V
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):727-47. PubMed ID: 9457648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode of firing and rectifying properties of nucleus ovoidalis neurons in the avian auditory thalamus.
    Ströhmann B; Schwarz DW; Puil E
    J Neurophysiol; 1994 Apr; 71(4):1351-60. PubMed ID: 8035219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones.
    McCormick DA; Pape HC
    J Physiol; 1990 Dec; 431():291-318. PubMed ID: 1712843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem.
    Banks MI; Pearce RA; Smith PH
    J Neurophysiol; 1993 Oct; 70(4):1420-32. PubMed ID: 7506755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperpolarization-activated inward current in neurons of the rat's dorsal nucleus of the lateral lemniscus in vitro.
    Fu XW; Brezden BL; Wu SH
    J Neurophysiol; 1997 Nov; 78(5):2235-45. PubMed ID: 9356377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholecystokinin-gated currents in neurons of the rat solitary complex in vitro.
    Branchereau P; Champagnat J; Denavit-Saubié M
    J Neurophysiol; 1993 Dec; 70(6):2584-95. PubMed ID: 7509860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro.
    Rekling JC; Champagnat J; Denavit-Saubié M
    J Neurophysiol; 1996 Feb; 75(2):795-810. PubMed ID: 8714653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of block by ZD 7288 of the hyperpolarization-activated inward rectifying current in guinea pig substantia nigra neurons in vitro.
    Harris NC; Constanti A
    J Neurophysiol; 1995 Dec; 74(6):2366-78. PubMed ID: 8747199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and postnatal development of a hyperpolarization-activated inward current in rat hypoglossal motoneurons in vitro.
    Bayliss DA; Viana F; Bellingham MC; Berger AJ
    J Neurophysiol; 1994 Jan; 71(1):119-28. PubMed ID: 7512625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hyperpolarization-activated cation conductance in lobster olfactory receptor neurons.
    Corotto FS; Michel WC
    J Neurophysiol; 1994 Jul; 72(1):360-5. PubMed ID: 7525891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repetitive firing properties of neurons in the ventral region of nucleus tractus solitarius. In vitro studies in adult and neonatal rat.
    Haddad GG; Getting PA
    J Neurophysiol; 1989 Dec; 62(6):1213-24. PubMed ID: 2600620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1993 Jul; 70(1):144-57. PubMed ID: 7689647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.