These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8410180)

  • 1. The direction change concept for reticulospinal control of goldfish escape.
    Foreman MB; Eaton RC
    J Neurosci; 1993 Oct; 13(10):4101-13. PubMed ID: 8410180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible body dynamics of the goldfish C-start: implications for reticulospinal command mechanisms.
    Eaton RC; DiDomenico R; Nissanov J
    J Neurosci; 1988 Aug; 8(8):2758-68. PubMed ID: 3411353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The motor output of the Mauthner cell, a reticulospinal command neuron.
    Nissanov J; Eaton RC; DiDomenico R
    Brain Res; 1990 May; 517(1-2):88-98. PubMed ID: 2376010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fictive swimming elicited by electrical stimulation of the midbrain in goldfish.
    Fetcho JR; Svoboda KR
    J Neurophysiol; 1993 Aug; 70(2):765-80. PubMed ID: 8410171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Mauthner cell and other identified neurons of the brainstem escape network of fish.
    Eaton RC; Lee RK; Foreman MB
    Prog Neurobiol; 2001 Mar; 63(4):467-85. PubMed ID: 11163687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateralization and adaptation of a continuously variable behavior following lesions of a reticulospinal command neuron.
    DiDomenico R; Nissanov J; Eaton RC
    Brain Res; 1988 Nov; 473(1):15-28. PubMed ID: 3208117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between the neural networks for escape and swimming in goldfish.
    Svoboda KR; Fetcho JR
    J Neurosci; 1996 Jan; 16(2):843-52. PubMed ID: 8551364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S- and C-start escape responses of the muskellunge (Esox masquinongy) require alternative neuromotor mechanisms.
    Hale ME
    J Exp Biol; 2002 Jul; 205(Pt 14):2005-16. PubMed ID: 12089206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some voluntary C-bends may be Mauthner neuron initiated.
    Canfield JG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Oct; 193(10):1055-64. PubMed ID: 17674008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supraspinal control of spinal reflex responses to body bending during different behaviours in lampreys.
    Hsu LJ; Zelenin PV; Orlovsky GN; Deliagina TG
    J Physiol; 2017 Feb; 595(3):883-900. PubMed ID: 27589479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spinal motor system in early vertebrates and some of its evolutionary changes.
    Fetcho JR
    Brain Behav Evol; 1992; 40(2-3):82-97. PubMed ID: 1422809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strikes and startles of northern pike (Esox lucius): a comparison of muscle activity and kinematics between S-start behaviors.
    Schriefer JE; Hale ME
    J Exp Biol; 2004 Jan; 207(Pt 3):535-44. PubMed ID: 14691101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mauthner and reticulospinal responses to the onset of acoustic pressure and acceleration stimuli.
    Casagrand JL; Guzik AL; Eaton RC
    J Neurophysiol; 1999 Sep; 82(3):1422-37. PubMed ID: 10482759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How stimulus direction determines the trajectory of the Mauthner-initiated escape response in a teleost fish.
    Eaton RC; Emberley DS
    J Exp Biol; 1991 Nov; 161():469-87. PubMed ID: 1757775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns.
    Kargo WJ; Giszter SF
    J Neurophysiol; 2000 Mar; 83(3):1480-501. PubMed ID: 10712474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local Spinal Cord Circuits and Bilateral Mauthner Cell Activity Function Together to Drive Alternative Startle Behaviors.
    Liu YC; Hale ME
    Curr Biol; 2017 Mar; 27(5):697-704. PubMed ID: 28216316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-joint rapid arm movements in normal subjects and in patients with motor disorders.
    Berardelli A; Hallett M; Rothwell JC; Agostino R; Manfredi M; Thompson PD; Marsden CD
    Brain; 1996 Apr; 119 ( Pt 2)():661-74. PubMed ID: 8800955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal networks underlying the escape response in goldfish. General implications for motor control.
    Faber DS; Fetcho JR; Korn H
    Ann N Y Acad Sci; 1989; 563():11-33. PubMed ID: 2672948
    [No Abstract]   [Full Text] [Related]  

  • 20. Hydrodynamics of C-Start Escape Responses of Fish as Studied with Simple Physical Models.
    Witt WC; Wen L; Lauder GV
    Integr Comp Biol; 2015 Oct; 55(4):728-39. PubMed ID: 25920507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.