These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 8410198)

  • 1. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord.
    Soffe SR
    J Neurosci; 1993 Oct; 13(10):4456-69. PubMed ID: 8410198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos.
    Perrins R; Soffe SR
    J Neurophysiol; 1996 Aug; 76(2):1025-35. PubMed ID: 8871217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor patterns for two distinct rhythmic behaviors evoked by excitatory amino acid agonists in the Xenopus embryo spinal cord.
    Soffe SR
    J Neurophysiol; 1996 May; 75(5):1815-25. PubMed ID: 8734582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos.
    Sillar KT; Roberts A
    J Neurosci; 1992 May; 12(5):1647-57. PubMed ID: 1578259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-dependent Modulation of a Cutaneous Sensory Pathway by Glycinergic Inhibition from the Locomotor Rhythm Generator in Xenopus Embryos.
    Sillar KT; Roberts A
    Eur J Neurosci; 1992 Oct; 4(11):1022-1034. PubMed ID: 12106408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of commissural interneurons in spinal cord of Xenopus embryos.
    Soffe SR; Clarke JD; Roberts A
    J Neurophysiol; 1984 Jun; 51(6):1257-67. PubMed ID: 6737030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic inhibition of primary afferent transmitter release by 5-hydroxytryptamine at a mechanosensory synapse in the vertebrate spinal cord.
    Sillar KT; Simmers AJ
    J Neurosci; 1994 May; 14(5 Pt 1):2636-47. PubMed ID: 8182432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity.
    Roberts A; Perrins R
    J Physiol Paris; 1995; 89(4-6):241-8. PubMed ID: 8861822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of premotor interneuron populations on the frequency of the spinal pattern generator for swimming in Xenopus embryos: a simulation study.
    Wolf E; Roberts A
    Eur J Neurosci; 1995 Apr; 7(4):671-8. PubMed ID: 7620618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles.
    Li WC; Perrins R; Walford A; Roberts A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jan; 189(1):29-37. PubMed ID: 12548427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activities of identified interneurons, motoneurons, and muscle fibers during fictive swimming in the lamprey and effects of reticulospinal and dorsal cell stimulation.
    Buchanan JT; Cohen AH
    J Neurophysiol; 1982 May; 47(5):948-60. PubMed ID: 7086476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetries in sensory pathways from skin to motoneurons on each side of the body determine the direction of an avoidance response in hatchling Xenopus tadpoles.
    Zhao FY; Burton BG; Wolf E; Roberts A
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):471-87. PubMed ID: 9490873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triggering and gating of motor responses by sensory stimulation: behavioural selection in Xenopus embryos.
    Soffe SR
    Proc Biol Sci; 1991 Dec; 246(1317):197-203. PubMed ID: 1686085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos.
    Roberts A; Dale N; Evoy WH; Soffe SR
    J Neurophysiol; 1985 Jul; 54(1):1-10. PubMed ID: 2993537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory gating of an embryonic zebrafish interneuron during spontaneous motor behaviors.
    Knogler LD; Drapeau P
    Front Neural Circuits; 2014; 8():121. PubMed ID: 25324729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tonic and phasic synaptic input to spinal cord motoneurons during fictive locomotion in frog embryos.
    Soffe SR; Roberts A
    J Neurophysiol; 1982 Dec; 48(6):1279-88. PubMed ID: 6296327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1013-9. PubMed ID: 7608751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor activity in the isolated spinal cord of the chick embryo: synaptic drive and firing pattern of single motoneurons.
    O'Donovan MJ
    J Neurosci; 1989 Mar; 9(3):943-58. PubMed ID: 2926486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.