These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 8411132)

  • 1. Lateral mobility of lipid analogues and GPI-anchored proteins in supported bilayers determined by fluorescent bead tracking.
    Fein M; Unkeless J; Chuang FY; Sassaroli M; da Costa R; Väänänen H; Eisinger J
    J Membr Biol; 1993 Jul; 135(1):83-92. PubMed ID: 8411132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved membrane fluidity of ionic polysaccharide bead-supported phospholipid bilayer membrane systems.
    Haratake M; Takahira E; Yoshida S; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Jul; 107():90-6. PubMed ID: 23466547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of brownian motion of lipids in a membrane.
    Lee GM; Ishihara A; Jacobson KA
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):6274-8. PubMed ID: 1712486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outer membrane monolayer domains from two-dimensional surface scanning resistance measurements.
    Suzuki K; Sterba RE; Sheetz MP
    Biophys J; 2000 Jul; 79(1):448-59. PubMed ID: 10866970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral diffusion and fluorescence microscope studies on a monoclonal antibody specifically bound to supported phospholipid bilayers.
    Tamm LK
    Biochemistry; 1988 Mar; 27(5):1450-7. PubMed ID: 3365400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking movements of lipids and Thy1 molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with nanometer scale precision.
    Hicks BW; Angelides KJ
    J Membr Biol; 1995 Apr; 144(3):231-44. PubMed ID: 7658460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence microscopic characterization of ionic polymer bead-supported phospholipid bilayer membrane systems.
    Haratake M; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2012 Dec; 100():190-6. PubMed ID: 22766297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic analogues of glycosylphosphatidylinositol-anchored proteins and their behavior in supported lipid bilayers.
    Paulick MG; Wise AR; Forstner MB; Groves JT; Bertozzi CR
    J Am Chem Soc; 2007 Sep; 129(37):11543-50. PubMed ID: 17715922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical manipulation of glycan-phosphatidyl inositol-tethered proteins in planar supported bilayers.
    Groves JT; Wülfing C; Boxer SG
    Biophys J; 1996 Nov; 71(5):2716-23. PubMed ID: 8913608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insertion of GPI-anchored alkaline phosphatase into supported membranes: a combined AFM and fluorescence microscopy study.
    Rieu JP; Ronzon F; Place C; Dekkiche F; Cross B; Roux B
    Acta Biochim Pol; 2004; 51(1):189-97. PubMed ID: 15094839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPI-anchored protein organization and dynamics at the cell surface.
    Saha S; Anilkumar AA; Mayor S
    J Lipid Res; 2016 Feb; 57(2):159-75. PubMed ID: 26394904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells.
    Pralle A; Keller P; Florin EL; Simons K; Hörber JK
    J Cell Biol; 2000 Mar; 148(5):997-1008. PubMed ID: 10704449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation and charge determination of proteins in photopatterned solid supported bilayers.
    Han X; Cheetham MR; Sheikh K; Olmsted PD; Bushby RJ; Evans SD
    Integr Biol (Camb); 2009 Feb; 1(2):205-11. PubMed ID: 20023804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor necrosis factor and immune interferon act in concert to slow the lateral diffusion of proteins and lipids in human endothelial cell membranes.
    Stolpen AH; Golan DE; Pober JS
    J Cell Biol; 1988 Aug; 107(2):781-9. PubMed ID: 3138247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monopalmitoylphosphatidylcholine incorporation into human erythrocyte ghost membranes causes protein and lipid immobilization and cholesterol depletion.
    Golan DE; Furlong ST; Brown CS; Caulfield JP
    Biochemistry; 1988 Apr; 27(8):2661-7. PubMed ID: 3401442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of support corrugation on silica xerogel--supported phase-separated lipid bilayers.
    Goksu EI; Nellis BA; Lin WC; Satcher JH; Groves JT; Risbud SH; Longo ML
    Langmuir; 2009 Apr; 25(6):3713-7. PubMed ID: 19708250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The polymer-supported phospholipid bilayer: tethering as a new approach to substrate-membrane stabilization.
    Naumann C; Prucker O; Lehmann T; Rühe J; Knoll W; Frank CW
    Biomacromolecules; 2002; 3(1):27-35. PubMed ID: 11866552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2.
    Chan PY; Lawrence MB; Dustin ML; Ferguson LM; Golan DE; Springer TA
    J Cell Biol; 1991 Oct; 115(1):245-55. PubMed ID: 1717480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.