These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 8411175)
1. Residues of the Bacillus subtilis phage phi 29 transcriptional activator required both to interact with RNA polymerase and to activate transcription. Mencía M; Salas M; Rojo F J Mol Biol; 1993 Oct; 233(4):695-704. PubMed ID: 8411175 [TBL] [Abstract][Full Text] [Related]
2. Substitution of the C-terminal domain of the Escherichia coli RNA polymerase alpha subunit by that from Bacillus subtilis makes the enzyme responsive to a Bacillus subtilis transcriptional activator. Mencía M; Monsalve M; Rojo F; Salas M J Mol Biol; 1998 Jan; 275(2):177-85. PubMed ID: 9466901 [TBL] [Abstract][Full Text] [Related]
3. A Mutation in the C-terminal domain of the RNA polymerase alpha subunit that destabilizes the open complexes formed at the phage phi 29 late A3 promoter. Calles B; Monsalve M; Rojo F; Salas M J Mol Biol; 2001 Mar; 307(2):487-97. PubMed ID: 11254377 [TBL] [Abstract][Full Text] [Related]
4. Binding of phage phi29 protein p4 to the early A2c promoter: recruitment of a repressor by the RNA polymerase. Monsalve M; Calles B; Mencía M; Rojo F; Salas M J Mol Biol; 1998 Oct; 283(3):559-69. PubMed ID: 9784366 [TBL] [Abstract][Full Text] [Related]
5. The switch from early to late transcription in phage GA-1: characterization of the regulatory protein p4G. Horcajadas JA; Monsalve M; Rojo F; Salas M J Mol Biol; 1999 Jul; 290(5):917-28. PubMed ID: 10438592 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional activator of phage phi 29 late promoter: mapping of residues involved in interaction with RNA polymerase and in DNA bending. Mencía M; Monsalve M; Salas M; Rojo F Mol Microbiol; 1996 Apr; 20(2):273-82. PubMed ID: 8733227 [TBL] [Abstract][Full Text] [Related]
7. Requirement for an A-tract structure at the binding site of phage phi 29 transcriptional activator. Nuez B; Rojo F; Salas M J Mol Biol; 1994 Mar; 237(2):175-81. PubMed ID: 8126731 [TBL] [Abstract][Full Text] [Related]
8. Activation and repression of transcription at two different phage phi29 promoters are mediated by interaction of the same residues of regulatory protein p4 with RNA polymerase. Monsalve M; Mencia M; Rojo F; Salas M EMBO J; 1996 Jan; 15(2):383-91. PubMed ID: 8617213 [TBL] [Abstract][Full Text] [Related]
9. Protein p4 represses phage phi 29 A2c promoter by interacting with the alpha subunit of Bacillus subtilis RNA polymerase. Monsalve M; Mencía M; Salas M; Rojo F Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8913-8. PubMed ID: 8799127 [TBL] [Abstract][Full Text] [Related]
10. Transcription activation and repression by interaction of a regulator with the alpha subunit of RNA polymerase: the model of phage phi 29 protein p4. Rojo F; Mencía M; Monsalve M; Salas M Prog Nucleic Acid Res Mol Biol; 1998; 60():29-46. PubMed ID: 9594570 [TBL] [Abstract][Full Text] [Related]
11. Transcription activation by phage phi29 protein p4 is mediated by interaction with the alpha subunit of Bacillus subtilis RNA polymerase. Mencía M; Monsalve M; Rojo F; Salas M Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6616-20. PubMed ID: 8692866 [TBL] [Abstract][Full Text] [Related]
12. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts. Nuez B; Rojo F; Salas M Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11401-5. PubMed ID: 1454827 [TBL] [Abstract][Full Text] [Related]
13. Characterization of pre-transcription complexes made at a bacteriophage T4 middle promoter: involvement of the T4 MotA activator and the T4 AsiA protein, a sigma 70 binding protein, in the formation of the open complex. Hinton DM; March-Amegadzie R; Gerber JS; Sharma M J Mol Biol; 1996 Feb; 256(2):235-48. PubMed ID: 8594193 [TBL] [Abstract][Full Text] [Related]
14. The structure of phage phi29 transcription regulator p4-DNA complex reveals an N-hook motif for DNA. Badia D; Camacho A; Pérez-Lago L; Escandón C; Salas M; Coll M Mol Cell; 2006 Apr; 22(1):73-81. PubMed ID: 16600871 [TBL] [Abstract][Full Text] [Related]
15. Transcription regulation in Bacillus subtilis phage phi 29: expression of the viral promoters throughout the infection cycle. Monsalve M; Mencía M; Rojo F; Salas M Virology; 1995 Feb; 207(1):23-31. PubMed ID: 7871731 [TBL] [Abstract][Full Text] [Related]
16. Identification of the sequences recognized by phage phi 29 transcriptional activator: possible interaction between the activator and the RNA polymerase. Nuez B; Rojo F; Barthelemy I; Salas M Nucleic Acids Res; 1991 May; 19(9):2337-42. PubMed ID: 1904153 [TBL] [Abstract][Full Text] [Related]
17. AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. Tanaka A; Takano Y; Ohnishi Y; Horinouchi S J Mol Biol; 2007 Jun; 369(2):322-33. PubMed ID: 17434533 [TBL] [Abstract][Full Text] [Related]
18. Purification and in vitro activities of the Bacillus subtilis TnrA transcription factor. Wray LV; Zalieckas JM; Fisher SH J Mol Biol; 2000 Jun; 300(1):29-40. PubMed ID: 10864496 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional activator C protein-mediated unwinding of DNA as a possible mechanism for mom gene activation. Basak S; Nagaraja V J Mol Biol; 1998 Dec; 284(4):893-902. PubMed ID: 9837713 [TBL] [Abstract][Full Text] [Related]
20. Novel substitutions in the sigma54-dependent activator DctD that increase dependence on upstream activation sequences or uncouple ATP hydrolysis from transcriptional activation. Xu H; Kelly MT; Nixon BT; Hoover TR Mol Microbiol; 2004 Oct; 54(1):32-44. PubMed ID: 15458403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]