BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8411212)

  • 1. Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock.
    Van de Peer Y; Neefs JM; De Rijk P; De Wachter R
    J Mol Evol; 1993 Aug; 37(2):221-32. PubMed ID: 8411212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of stramenopiles and alveolates as derived by "substitution rate calibration" of small ribosomal subunit RNA.
    Van de Peer Y; Van der Auwera G; De Wachter R
    J Mol Evol; 1996 Feb; 42(2):201-10. PubMed ID: 8919872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary distances between nucleotide sequences based on the distribution of substitution rates among sites as estimated by parsimony.
    Tourasse NJ; Gouy M
    Mol Biol Evol; 1997 Mar; 14(3):287-98. PubMed ID: 9066796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances.
    Van de Peer Y; Baldauf SL; Doolittle WF; Meyer A
    J Mol Evol; 2000 Dec; 51(6):565-76. PubMed ID: 11116330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a variability map for eukaryotic large subunit ribosomal RNA.
    Ben Ali A; Wuyts J; De Wachter R; Meyer A; Van de Peer Y
    Nucleic Acids Res; 1999 Jul; 27(14):2825-31. PubMed ID: 10390522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA.
    Hendriks L; De Baere R; Van de Peer Y; Neefs J; Goris A; De Wachter R
    J Mol Evol; 1991 Feb; 32(2):167-77. PubMed ID: 1901093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical models for substitution in ribosomal RNA.
    Smith AD; Lui TW; Tillier ER
    Mol Biol Evol; 2004 Mar; 21(3):419-27. PubMed ID: 14660689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertebrate evolution reflected in the evolution of nuclear ribosomal internal transcribed spacer 2.
    Kupriyanova N; Shibalev D; Voronov A; Netchvolodov K; Kurako T; Ryskov A
    Gene; 2012 Oct; 508(1):85-91. PubMed ID: 22884783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Database on the structure of small ribosomal subunit RNA.
    Van de Peer Y; Nicolaï S; De Rijk P; De Wachter R
    Nucleic Acids Res; 1996 Jan; 24(1):86-91. PubMed ID: 8594609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAGA: RNA sequence alignment by genetic algorithm.
    Notredame C; O'Brien EA; Higgins DG
    Nucleic Acids Res; 1997 Nov; 25(22):4570-80. PubMed ID: 9358168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA.
    Wuyts J; De Rijk P; Van de Peer Y; Pison G; Rousseeuw P; De Wachter R
    Nucleic Acids Res; 2000 Dec; 28(23):4698-708. PubMed ID: 11095680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small ribosomal subunit RNA sequences, evolutionary relationships among different life forms, and mitochondrial origins.
    Van de Peer Y; Neefs JM; De Wachter R
    J Mol Evol; 1990 May; 30(5):463-76. PubMed ID: 2111858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scoredist: a simple and robust protein sequence distance estimator.
    Sonnhammer EL; Hollich V
    BMC Bioinformatics; 2005 Apr; 6():108. PubMed ID: 15857510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis.
    Okimoto R; Macfarlane JL; Wolstenholme DR
    J Mol Evol; 1994 Dec; 39(6):598-613. PubMed ID: 7528811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compilation of small ribosomal subunit RNA structures.
    Neefs JM; Van de Peer Y; De Rijk P; Chapelle S; De Wachter R
    Nucleic Acids Res; 1993 Jul; 21(13):3025-49. PubMed ID: 8332525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary and secondary structure of the 18S ribosomal RNA of the bird spider Eurypelma californica and evolutionary relationships among eukaryotic phyla.
    Hendriks L; Van Broeckhoven C; Vandenberghe A; Van de Peer Y; De Wachter R
    Eur J Biochem; 1988 Oct; 177(1):15-20. PubMed ID: 3181152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonuniformity of nucleotide substitution rates in molecular evolution: computer simulation and analysis of 5S ribosomal RNA sequences.
    Manske CL; Chapman DJ
    J Mol Evol; 1987; 26(3):226-51. PubMed ID: 3129569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 18S ribosomal RNA sequence of the sea anemone Anemonia sulcata and its evolutionary position among other eukaryotes.
    Hendriks L; Van de Peer Y; Van Herck M; Neefs JM; De Wachter R
    FEBS Lett; 1990 Sep; 269(2):445-9. PubMed ID: 1976100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny.
    Russo CA; Takezaki N; Nei M
    Mol Biol Evol; 1996 Mar; 13(3):525-36. PubMed ID: 8742641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative map of nucleotide substitution rates in bacterial rRNA.
    Van de Peer Y; Chapelle S; De Wachter R
    Nucleic Acids Res; 1996 Sep; 24(17):3381-91. PubMed ID: 8811093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.