BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8411772)

  • 1. Effects of NG-nitro-L-arginine on isolated rabbit afferent arterioles.
    Tamaki T; Hasui K; Aki Y; Kimura S; Abe Y
    Jpn J Pharmacol; 1993 Jul; 62(3):231-7. PubMed ID: 8411772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of nitric oxide in desmopressin-induced vasodilation of microperfused rabbit afferent arterioles.
    Kiyomoto K; Tamaki T; Tomohiro A; Nishiyama A; Aki Y; Kimura S; Abe Y
    Hypertens Res; 1997 Mar; 20(1):29-34. PubMed ID: 9101310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of glomerular arteriolar tone by nitric oxide synthase inhibitors.
    Edwards RM; Trizna W
    J Am Soc Nephrol; 1993 Nov; 4(5):1127-32. PubMed ID: 7508276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of angiotensin II on isolated rabbit afferent arterioles.
    Yoshida H; Tamaki T; Aki Y; Kimura S; Takenaka I; Abe Y
    Jpn J Pharmacol; 1994 Dec; 66(4):457-64. PubMed ID: 7723223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the role of nitric oxide in macula densa control of glomerular hemodynamics.
    Ito S; Ren Y
    J Clin Invest; 1993 Aug; 92(2):1093-8. PubMed ID: 8349792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelium-derived relaxing factor/nitric oxide modulates angiotensin II action in the isolated microperfused rabbit afferent but not efferent arteriole.
    Ito S; Arima S; Ren YL; Juncos LA; Carretero OA
    J Clin Invest; 1993 May; 91(5):2012-9. PubMed ID: 8486771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide regulates cerebral arteriolar tone in rats.
    Kimura M; Dietrich HH; Dacey RG
    Stroke; 1994 Nov; 25(11):2227-33; discussion 2233-4. PubMed ID: 7974550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-derived relaxing factor modulates noradrenergic constriction of cerebral arterioles in rabbits.
    Bauknight GC; Faraci FM; Heistad DD
    Stroke; 1992 Oct; 23(10):1522-5; discussion 1525-6. PubMed ID: 1412591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vasodilation induced by vasopressin V2 receptor stimulation in afferent arterioles.
    Tamaki T; Kiyomoto K; He H; Tomohiro A; Nishiyama A; Aki Y; Kimura S; Abe Y
    Kidney Int; 1996 Mar; 49(3):722-9. PubMed ID: 8648913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium-derived relaxing factor modulates endothelin action in afferent arterioles.
    Ito S; Juncos LA; Nushiro N; Johnson CS; Carretero OA
    Hypertension; 1991 Jun; 17(6 Pt 2):1052-6. PubMed ID: 2045149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-arginine analogues blunt prostaglandin-related dilation of arterioles.
    Koller A; Sun D; Messina EJ; Kaley G
    Am J Physiol; 1993 Apr; 264(4 Pt 2):H1194-9. PubMed ID: 8476097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired response to acetylcholine despite intact endothelium-derived relaxing factor/nitric oxide in isolated microperfused afferent arterioles of the spontaneously hypertensive rat.
    Ito S; Carretero OA
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S187-9. PubMed ID: 1282964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EDRF-angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles.
    Ohishi K; Carmines PK; Inscho EW; Navar LG
    Am J Physiol; 1992 Nov; 263(5 Pt 2):F900-6. PubMed ID: 1332506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disparate effects of insulin on isolated rabbit afferent and efferent arterioles.
    Juncos LA; Ito S
    J Clin Invest; 1993 Oct; 92(4):1981-5. PubMed ID: 8408651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide modulates vascular tone in preglomerular arterioles.
    Imig JD; Roman RJ
    Hypertension; 1992 Jun; 19(6 Pt 2):770-4. PubMed ID: 1592479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles.
    Liu ZZ; Mathia S; Pahlitzsch T; Wennysia IC; Persson PB; Lai EY; Högner A; Xu MZ; Schubert R; Rosenberger C; Patzak A
    Am J Physiol Renal Physiol; 2017 May; 312(5):F908-F916. PubMed ID: 28052871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple factors contribute to acetylcholine-induced renal afferent arteriolar vasodilation during myogenic and norepinephrine- and KCl-induced vasoconstriction. Studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Loutzenhiser R; Epstein M; Suzuki H; Saruta T
    Circ Res; 1994 Nov; 75(5):821-8. PubMed ID: 7923627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles.
    Wang D; Borrego-Conde LJ; Falck JR; Sharma KK; Wilcox CS; Umans JG
    Kidney Int; 2003 Jun; 63(6):2187-93. PubMed ID: 12753306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of renin release is impaired after nitric oxide inhibition.
    Chatziantoniou C; Pauti MD; Pinet F; Promeneur D; Dussaule JC; Ardaillou R
    Kidney Int; 1996 Mar; 49(3):626-33. PubMed ID: 8648902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation.
    Jones CJ; DeFily DV; Patterson JL; Chilian WM
    Circulation; 1993 Apr; 87(4):1264-74. PubMed ID: 8384938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.